
What is biological information? (II)

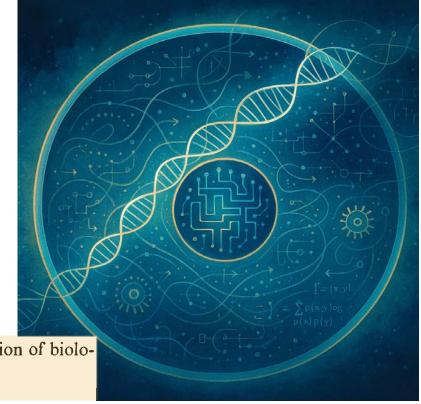

<u>Course 1:</u> Introduction – *Biological computation*

Thomas Lecuit

chaire: Dynamiques du vivant

What is biological information? (II)

- Organisation et dynamique
- Flux de matière
- « Un courant de matières (...) traverse continuellement l'organisme et le renouvelle dans sa substance en le maintenant dans sa forme. Ce mouvement, qu'on a appelé le *tourbillon vital*, (...) est la condition et la cause immédiate de toutes les autres manifestations vitales. (...) L'universalité d'un tel phénomène, la constance qu'il présente, sa nécessité, en font le caractère fondamental de l'être vivant, le signe plus général de la vie."
- Flux d'énergie: dynamique (hors d'équilibre)
- Flux d'information: organisation


C. Bernard 1875, *Définition de la vie*, partie III.

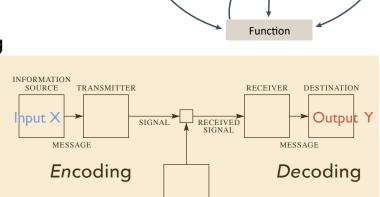
What is biological information? (II)

he power and mystery of life is entangled within the information processing at the heart of all cellular machinery.

Qian, L. & Winfree, E. Science 332, 1196-1201 (2011).

THE PROBLEM of Morphogenesis—broadly understood as the origin and evolution of biological structures—is one of the outstanding questions in present day Biology.

Thom, R. Topological models in biology. *Topology* 8, 313–335. (1969)


Thomas LECUIT 2025-2026

Overview – What is Biological Information? (I)

- Theory of communication: probabilistic definition of information based on ignorance/knowledge.
- The content of information (semantic) is irrelevant.
- Information as entropy is a quantity:
 - 1. Codes, Information encoding, decoding, recoding
 - 2. Communication/transmission
 - 3. Capacity of a channel.

New look at embryonic patterning and cell signalling

Biochemistry

Information

Mechanics

Geometry

Fig. 1 — Schematic diagram of a general communication system.

- But there are other forms of information: Mechanical, and Structural information.
 It is not clear how to account for this.
- Learning and memory.

Why study information?

- 1. Information provides a framework to decipher the meaningfulness of processes Intimately linked to functions.
- Chemical characterisation of living processes
- Mechanical description as well
- These allow bottom up models of organisation and dynamics
- Molecules have a context dependent meaning for a system.
 Information is not absolute but contextual.

What is an efficient and relevant encoding? One that has meaning (ie. functional)

• Information as meaning is fundamentally orthogonal to what Shannon proposed. But meaning matters in biology. There is a need to address this.

Why study information?

- 1. Information provides a framework to decipher the meaningfulness of processes

 Intimately linked to functions.
- 2. Information provides a language to decipher the logic of living systems

In what sense can it be said that living systems compute? Consider the *machine metaphor*.

This is nothing but a metaphor. There are many reasons to say that living organisms are not mere complex machines:

- Not exposed to a finite list of instructions. Exposed rather to open environment, including novelty.
- Responses are not invariant. Context dependency.
- Robust to perturbations. Machines are brittle

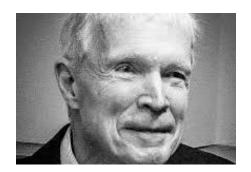
But this is a useful metaphor

This year

Information provides a language to address the meaning and logic in living systems

Use Computational metaphor to account for:

- Purpose/function
- Rules & Logic


Biological processes can be usefully described as **information processing**: they involve the manipulation of symbolic representations according to formal rules to achieve a functional outcome.

This perspective shifts the focus from the specific chemical substrates (e.g., DNA, proteins) to the logical and algorithmic principles governing the system.

Computation as prediction

Link between logic and meaning: prediction

John J. Hopfield

Physics, Computation, and Why Biology Looks so Different

J. J. HOPFIELD

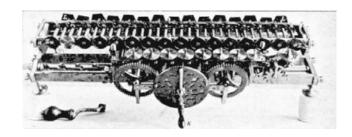
Divisions of Chemistry and Biology, California Institute of Technology, Pasadena, CA 91125, U.S.A.

Crudely put, one who can predict the future from the present and make advantageous choices of action on the basis of that prediction will generally win in the game of evolution. Much of the history of evolution can be read as the evolution of systems to make environmental measurements, make predictions, and generate appropriate actions. This pattern has the essential aspects of a computational system, where the inputs are from environmental measurements, the outputs are the signals (chemical or electrical) which modulate the behavior, and the computation represents an appropriate generation of outputs in response to environmental signals.

Living systems as computing machines

Historical perspective

- Descartes (1662)
- Living organisms are deterministic machines akin to clockworks
- Source of motion is heat and mechanics

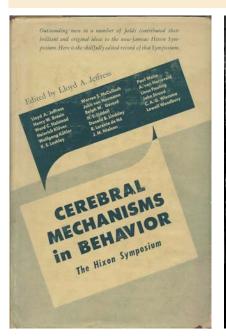

« Je ne reconnais aucune différence entre les machines que font les artisans et les divers corps que la nature seule compose. (...). Et il est certain que toutes les règles des Mécaniques appartiennent à la Physique, en sorte que toutes les choses qui sont artificielles, sont avec cela naturelles. Car, par exemple, lorsqu'une montre marque les heures par le moyen des roues dont elle est faite, cela ne lui est pas moins naturel qu'il est à un arbre... de produire ses fruits. »

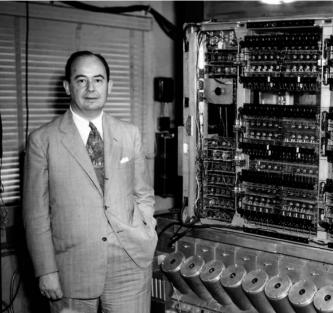
Descartes, Principes de la Philosophie, 1644.

- Leibniz (1666)
- Logic and rationality: calculus ratiocinator using the characteristica universalis

"The history of the modern computing machine goes back to Leibniz and Pascal. Indeed, the general idea of a computing machine is nothing but a mechanization of Leibniz's *calculus ratiocinator*.»

Norbert Wiener (1948)





Living systems as computing machines

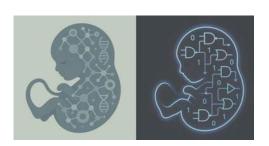
Historical perspective

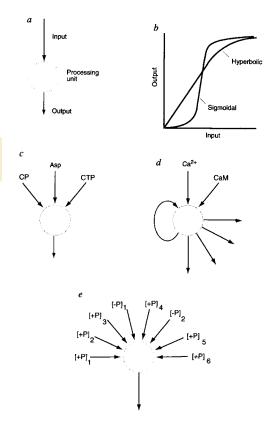
The General and Logical Theory of Automata

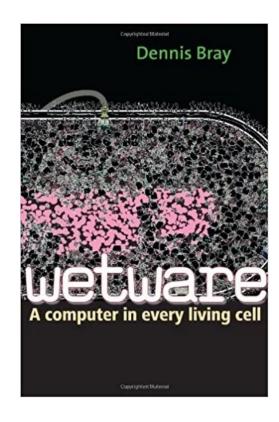
John von Neumann (1903-1957)

- The cell is a self-replicating machine
- It contains and processes information

Thomas LECUIT 2025-2026

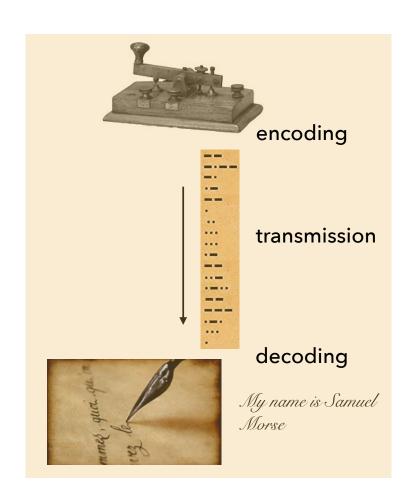

Living systems as computing machines


Historical perspective


Protein molecules as computational elements in living cells

Dennis Bray

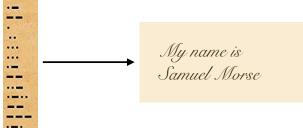
Many proteins in living cells appear to have as their primary function the transfer and processing of information, rather than the chemical transformation of metabolic intermediates or the building of cellular structures. Such proteins are functionally linked through allosteric or other mechanisms into biochemical 'circuits' that perform a variety of simple computational tasks including amplification, integration and information storage.

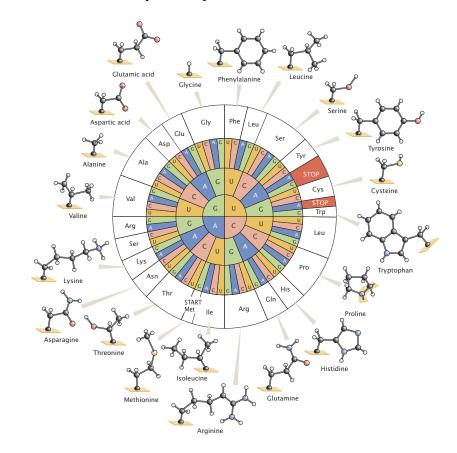


Communication, Information, Codes in Humans

• Information is:

- Encoded
- 2. Sent (sender)
- 3. Transmitted (via electric signals)
- 4. Interpreted (receiver)
- A code is used as an intermediate between two forms of information
- A code transforms an information into another.
- In other words, a code changes a representation into another one.




Computation as Translation of symbols

- Symbols are used as representations for « things »
- Input Data are transformed into Output Data
- Input Symbols are *translated* into output Symbols

System:	Hash Marks	Roman	Decimal	Binary
Zero	n/a	n/a	0	0
One -	→	- →	1 -	1
Two	II	II	2	10
Three	III	III	3	11
Four	IIII	IV	4	100
Five	/111/	V	5	101
Six	/III/ I	VI	6	110
Seven	/III/ II	VII	7	111
Eight	/III/ III	VIII	8	1000
Nine	/111/ 1111	IX	9	1001
Ten	/ // /	X -	→ 10 →	1010
Eleven	/111/ /111/ 1	XI	11	1011
Twelve	/111/ /111/ 11	XII	12	1100
Thirteen	/111/ /111/ 111	XIII	13	1101
Fourteen	/111/ /111/ 1111	XIV	14	1110
Fifteen	/111/ /111/ /111/	XV	15	1111
Sixteen	/111/ /111/ /111/ 1	XVI	16	10000
Seventeen	/111/ /111/ /111/ 11	XVII	17	10001
Eighteen	/111/ /111/ /111/ 111	XVIII	18	10010
Nineteen	/111/ /111/ /111/ 1111	XIX	19	10011
Twenty	/111/ /111/ /111/ /111/	XX	20	10100

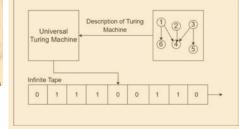
What is a computational machine?

Computational process:

A formally defined, <u>step-by-step</u> <u>transformation of information</u> (or state) according to a set of precise, <u>unambiguous rules</u>.

- 1. <u>Transformation of Information/State</u>: It takes an input (data, a symbol, a representation of a problem) and produces an output. *Eg. calculating a sum, sorting a list, rendering an image etc*
- 2. <u>Step-by-Step</u>: Computation is a sequence of discrete, individual steps that happen one after the other (or sometimes in parallel).
- 3. <u>Formally Defined & Unambiguous Rules</u>: the rules governing each step must be so precise that they can be automatised by a machine. This set of rules is called an algorithm.

What is a computational machine?


Computational process:

A formally defined, <u>step-by-step</u> <u>transformation of information</u> (or state) according to a

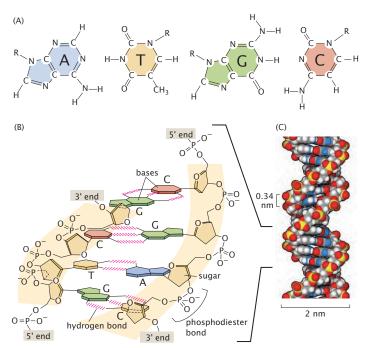
Reading/writing Head

set of precise, unambiguous rules.

- Tape (infinite)
- o State register: variable configuration
- o Transition table: rules

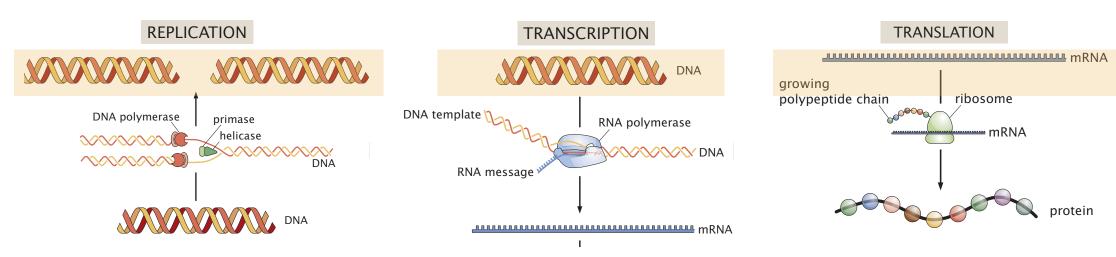
Requirements (eg. Turing machine):

1. Representation of information (Tape)


Turing, A. M. Proc. Lond. Math. Soc. s2–42, 230–265 (1936).

- 2. Transformation (Head): read, write, and change system's state (according to algorithm).
 - IF the device is in State X AND it reads Symbol Y,
 - THEN it should write Symbol Z, change to State W, and move the read/write mechanism (e.g., move left or right).
- 3. Control (Program/Rules): sequence operations

NB: It doesn't matter how it is instantiated (gears, transistors, etc)



- 1. Means of Representation (the "Tape"): Information is stored in biological structures.
 - \bigcirc Symbols: Nucleotides (A, T, C, G) in DNA, amino acids in proteins, ions (Ca²⁺), or the firing states (spike/not spike) of neurons.
 - OMemory Medium: DNA (long-term storage), RNA (short-term/temporary storage), concentrations of specific proteins or chemicals inside a cell.

- 1. Means of Representation (the "Tape"): Information is stored in biological structures.
 - \bigcirc Symbols: Nucleotides (A, T, C, G) in DNA, amino acids in proteins, ions (Ca²+), or the firing states (spike/not spike) of neurons.
 - OMemory Medium: DNA (long-term storage), RNA (short-term/temporary storage), concentrations of specific proteins or chemicals inside a cell.

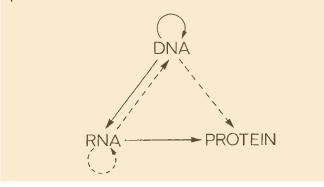
Thomas LECUIT 2025-2026

2. Means of Transformation ("Head"):

• Central Dogma: Crick 1970

F. Crick (1916-2004)

Central Dogma of Molecular Biology

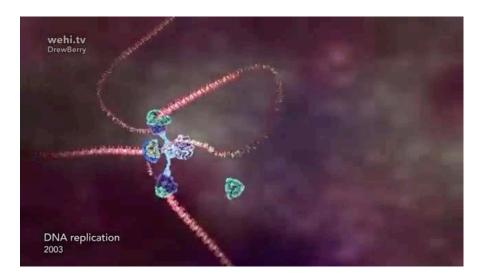

DY

FRANCIS CRICK

MRC Laboratory of Molecular Biology, Hills Road,

Cambridge CB2 2QH

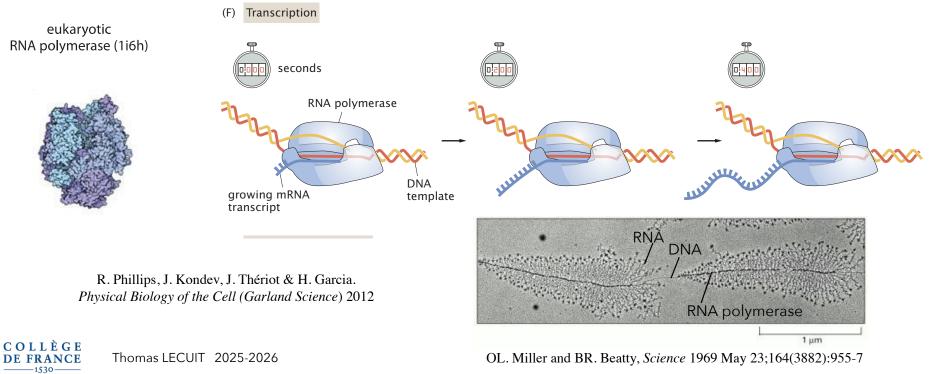
The central dogma of molecular biology deals with the detailed residue-by-residue transfer of sequential information. It states that such information cannot be transferred from protein to either protein or nucleic acid.



2. Means of Transformation ("Head"):

The "processing" is done by molecular machineries.

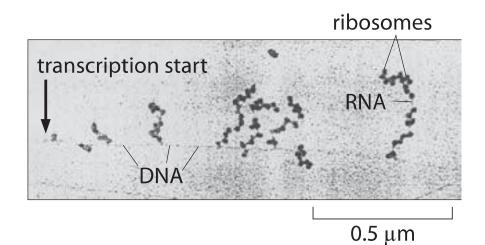
O Read/Write Mechanism: Enzymes like DNA polymerase (reads a DNA template and writes a new strand) and RNA polymerase (reads DNA and writes RNA). Ribosomes (read an RNA and write polypeptide)



2. Means of Transformation ("Head"):

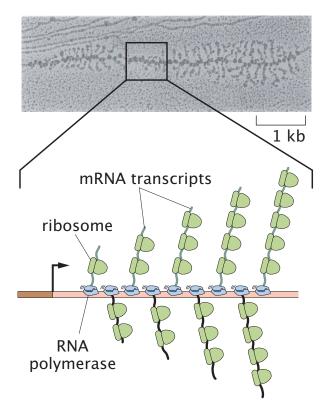
The "processing" is done by molecular machinery.

ORead/Write Mechanism: Enzymes like DNA polymerase (reads a DNA template and writes a new strand) and RNA polymerase (reads DNA and writes RNA). Ribosomes (read an RNA and write polypeptide)



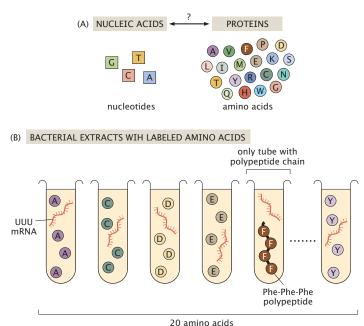
2. Means of Transformation ("Head"):

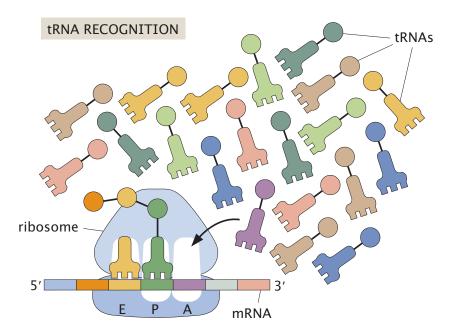
The "processing" is done by molecular machinery..


ORead/Write Mechanism: Enzymes like DNA polymerase (reads a DNA template and writes a new strand) and RNA polymerase (reads DNA and writes RNA). Ribosomes

(read an RNA and write polypeptide)

R. Phillips, J. Kondev, J. Thériot & H. Garcia. *Physical Biology of the Cell (Garland Science)* 2012

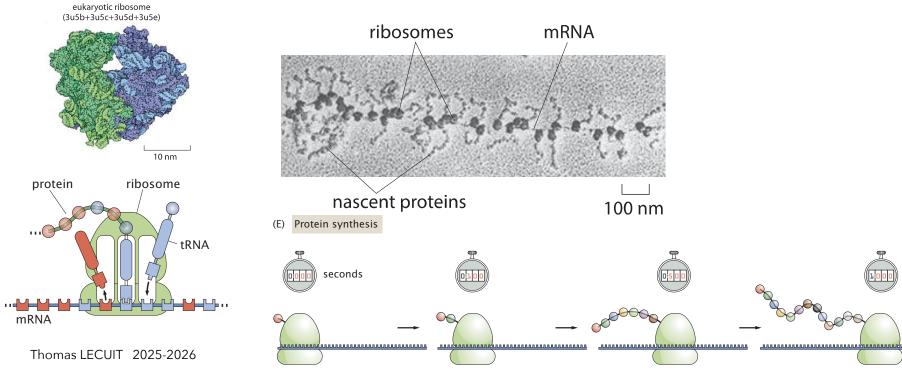




2. Means of Transformation ("Head"):

The "processing" is done by molecular machinery..

ORead/Write Mechanism: Enzymes like DNA polymerase (reads a DNA template and writes a new strand) and RNA polymerase (reads DNA and writes RNA). Ribosomes (read an RNA and write polypeptide)


Thomas LECUIT 2025-2026

R. Phillips, J. Kondev, J. Thériot & H. Garcia. Physical Biology of the Cell (Garland Science) 2012

2. Means of Transformation ("Head"):

The "processing" is done by molecular machinery..

ORead/Write Mechanism: Enzymes like DNA polymerase (reads a DNA template and writes a new strand) and RNA polymerase (reads DNA and writes RNA). Ribosomes (read an RNA and write polypeptide)

What is a computational machine?

Computational process:

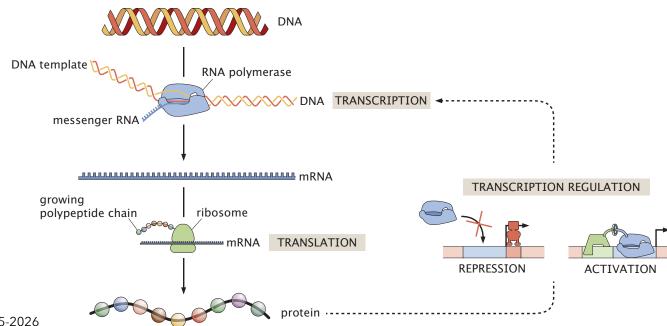
A formally defined, <u>step-by-step</u> <u>transformation of information</u> (or state) according to a set of precise, <u>unambiguous</u> <u>rules</u>.

Tape (infinite)

- Reading/writing Head
- o State register: variable configuration
- o Transition table: rules
- Requirements (eg. Turing machine):
 - 1. Representation of information (Tape)

Turing, A. M. Proc. Lond. Math. Soc. s2-42, 230-265 (1936).

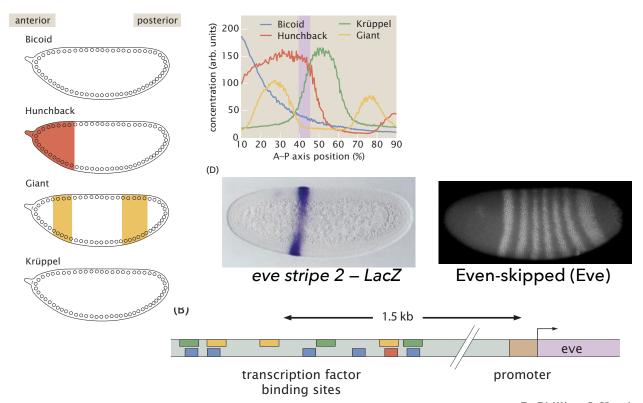
- 2. Transformation (Head): read, write, and change system's state (according to algorithm).
 - IF the device is in State X AND it reads Symbol Y,
 - **THEN** it should write Symbol **Z**, change to State **W**, and move the read/write mechanism (e.g., move left or right).
- 3. Control (Program/Rules): sequence operations


NB: It doesn't matter how it is instantiated (gears, transistors, etc)

3. Means of Control (the "Program"):

IF a specific transcription factor (input) is present (State X),

- ■AND it binds to a specific DNA sequence (reads Symbol Y),
- ■THEN it recruits RNA polymerase to write an mRNA molecule (Symbol Z), thereby changing the state of the cell.



Thomas LECUIT 2025-2026

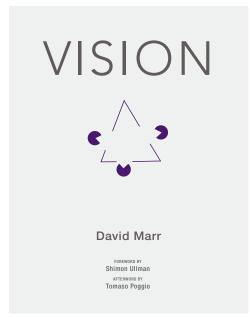
Biological computation

3. Means of Control (the "Program"): The sequence of operations is controlled by **regulatory networks**.

OThis is governed by gene regulatory networks and signalling pathways.

Computational neurosciences

A framework to disentangle in complex processes:


- The purpose/function (why): computational level
- The strategy (how): algorithmic level
- The biology/physics (what): implementational level

VISION

A Computational Investigation into the Human Representation and Processing of Visual Information

David Marr (1945-1980)

1982, Vision, David Marr W. H. Freeman and Company 2010: MIT press (re-published)

1. The Computational Level

(« What for » or « Why »)

• Goal: Identify the abstract computational problem the system is solving

• Questions:

- What is the task, the goal of the computation? What is the function?
- What are the constraints imposed on the system (speed, energy consumption, sensitivity to noice etc)
- Focus: The function associated with a given process.

This level is about the *problem itself*, independent of any specific algorithm or hardware.

2. The Algorithmic & Representational Level (« How »)

• Specify the representation for the input and output

There is usually a wide range of possible representations.

- **Decimal (54):** 5 tens + 4 ones = $(5 \times 10^{1}) + (4 \times 10^{0})$
- Binary (110110): 1 thirty-two + 1 sixteen + 0 eights + 1 four + 1 two + 0 ones = $(1 \times 2^5) + (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (0 \times 2^0)$ So, 54₁₀ = 110110₂
- Continuous (real #, or physical quantities, eg. Volt, Pa) vs Discrete (eg. binary #) variables: analog vs digital computation.

The input and output need not have the same representation: ex. Fourier transform: time domain as input, frequency domain as output.

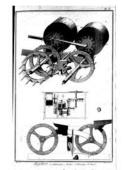
- Information processing strategy.
- The algorithm (the step-by-step procedure) transforms the input representation into the output representation.
- Defines the rule-based processing.

Different algorithms may exist for a given representation: choice depends on emphasis on eg. speed, robustness etc, or any other constraints defined in the computational level. Could also be influenced by implementation.

3. The Implementational Level

- Goal: Explain how the algorithm is physically realized.
- Questions: How is the algorithm and the representations physically implemented in hardware? What are the biological or mechanical structures that carry out the computation?
- Focus: The physical and chemical substrate (e.g., neurons, synapses, silicon chips, proteins).

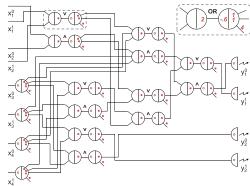
>>The 3 levels are largely independent.


Different physical implementations are possible:

Mechanical computation, vs Electronic computation, vs Molecular computation, vs Cellular computation

cm scale

Conservatoire national des arts et métiers, Paris



L'Encyclopédie de Diderot et d'Alembert

µm scale

(current transistors: few nm)

nm scale

 $y_2y_1 = \left[\sqrt{x_4x_3x_2x_1}\right]$

Thomas LECUIT 2025-2026

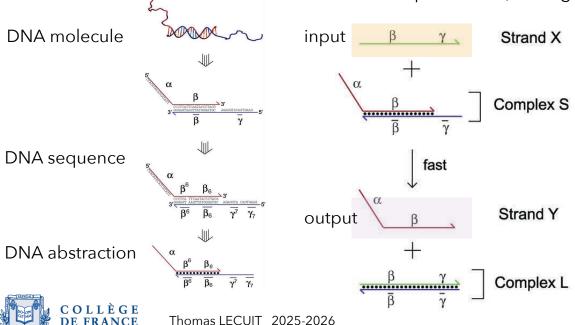
Arithmetic + - x /

Qian, L. & Winfree, E. Science 332, 1196-1201 (2011).

Marr's level of analysis: The Cash Register

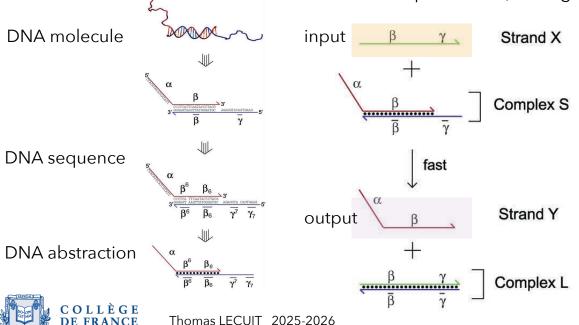
• **Computational Level:** The goal is to perform arithmetic addition. The theory is that of addition (e.g., commutativity: 5+2 = 2+5, associativity, existence of a zero and inverse (sum equals zero)). The constraint is that the output must be the sum of the inputs.

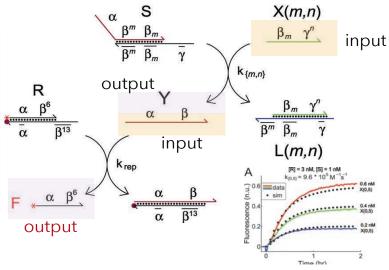
Algorithmic/Representational Level:


- o *Representation*: Input numbers are represented as base-10 digits on a keypad or as digital binary values. The output is represented as a set of symbols on a paper tape or on an LCD screen.
- o *Algorithm*: The specific step-by-step procedure. For example, it could use the algorithm learned in school (add the rightmost digits, carry the one, etc.) or it could use a different algorithm implemented in binary logic (e.g., a ripple-carry adder circuit).
- Implementational Level: This is the physical hardware: the specific arrangement of silicon transistors, logic gates, wires, and a power source that physically perform the binary addition algorithm.
 A mechanical cash register would use gears and levers.

1982, Vision, David Marr W. H. Freeman and Company

3. The Implementational Level: Molecular scale

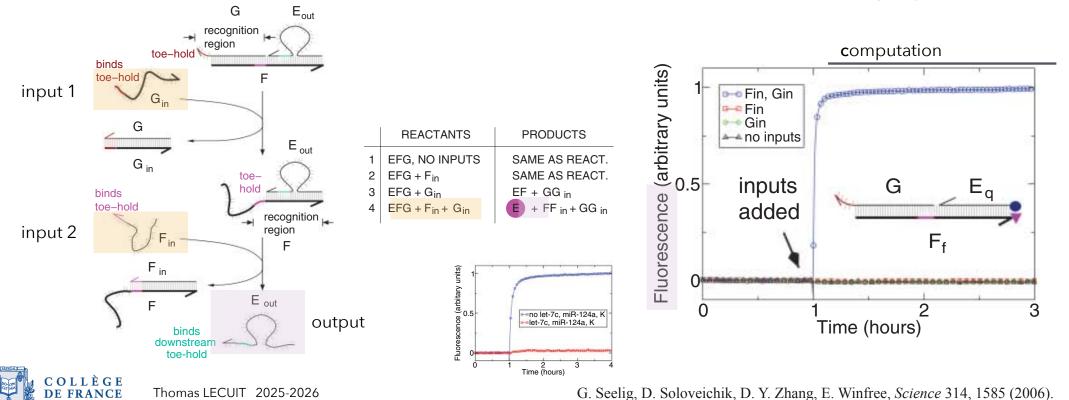

- Goal: Rational design of chemical devices (logic gates) capable of chemical computation using DNA.
- Approach:
 - o Leverages the high predictability of Watson-Crick nucleotide pairing.
 - o A DNA strand can serve as a signal when it is free, but is inhibited when it is bound to a complementary strand.
 - o Strand displacement allows the production of an output ssDNA signal given an input ssDNA signal.
 - o **Toehold**: a short single-stranded overhang region that initiates the strand displacement reaction and tunes the kinetics of strand displacement (via length of toehold).



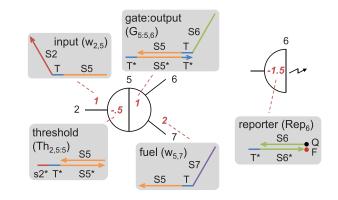
D. Y. Zhang, E. Winfree, J. Am. Chem. Soc. 131, 17303 (2009).

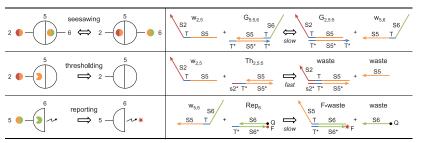
3. The Implementational Level: Molecular scale

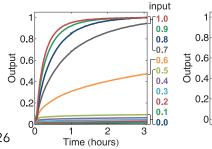
- Goal: Rational design of chemical devices (logic gates) capable of chemical computation using DNA.
- Approach:
 - o Leverages the high predictability of Watson-Crick nucleotide pairing.
 - o A DNA strand can serve as a signal when it is free, but is inhibited when it is bound to a complementary strand.
 - o Strand displacement allows the production of an output ssDNA signal given an input ssDNA signal.
 - Toehold: a short single-stranded overhang region that initiates the strand displacement reaction and tunes the kinetics of strand displacement (via length of toehold).

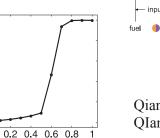


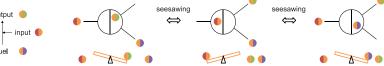
D. Y. Zhang, E. Winfree, J. Am. Chem. Soc. 131, 17303 (2009).


3. The Implementational Level: Molecular scale


- Design of a Two-input molecular AND gate: gate function fully determined by base pairing and breaking
- Implement full set of Boolean-logic functions (AND, OR and NOT): cascading and multilayering.
- To avoid degradation, signal is restored by threshold and amplifying gates
- Watson-Crick interactions between modular interaction domains determine the connectivity of gates.

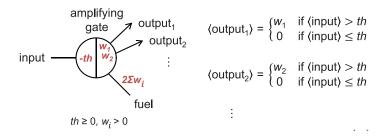

3. The Implementational Level: molecular scale


- Design of a seesaw gate:
 - o reversible reaction by exchanging the activity of DNA signals.
 - o a pair of see-saw gates can perform and Boolean logic function.
 - o gate represented by 2-sided node and wires represent DNA signals.
 - o Signals can be input, output or fuel (gate signals that catalyse output)
- Three basic functions:
 - Seesawing: reversible slow reaction
 - Thresholding: fast dead-end reaction that competes with seesawing.
 Seesawing occurs if and only if signal above threshold
 - o Reporting: does not compete with seesawing

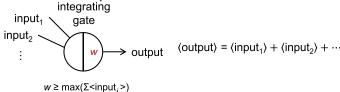


- Catalytic cycle: input signal can transform free fuel into output without being consumed
- Thresholding transforms analog signal into digital response

Input



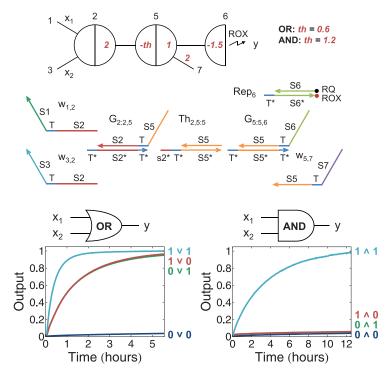
Thomas LECUIT 2025-2026


Qian, L. & Winfree, E. *Science* 332, 1196–1201 (2011). QIan, L. & Winfree, E. *J. R. Soc. Interface* 8, 1281–1297 (2011)

3. The Implementational Level: Molecular scale

• Amplifying gate: fan-out output increases up to maximum if input above threshold

 Integrating gate: fan-in output released stoichiometrically with input. output is sum of inputs.

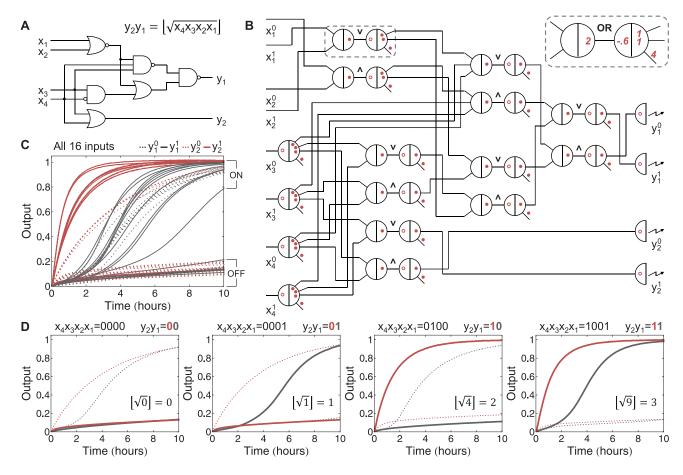


Thomas LECUIT 2025-2026

Building logical AND/OR gates from cascades of seesaw gates
 Integrating gate/Amplifying gate/Reporter gate

OR gate: low threshold

AND gate: high threshold: requires both inputs to pass threshold



Qian, L. & Winfree, E. Science 332, 1196-1201 (2011).

Marr's Tri-level of analysis

3. The Implementational Level: Molecular scale

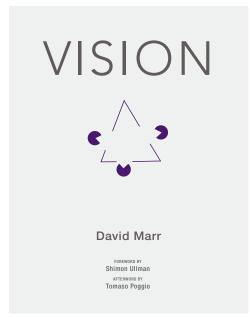
A digital circuit that computes the floor of the square root of a four-bit binary number!

Qian, L. & Winfree, E. Science 332, 1196-1201 (2011).

Marr's Tri-level of analysis

Computational neurosciences

A framework to disentangle in complex processes:

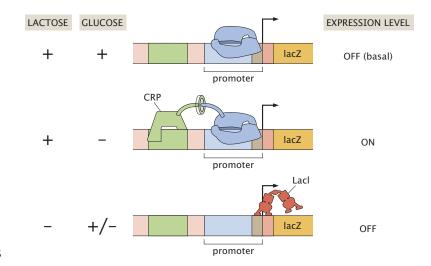

- The purpose/function (why): computational level
- The strategy (how): algorithmic level
- The biology/physics (what): implementational level

VISION

A Computational Investigation into the Human Representation and Processing of Visual Information

David Marr (1945-1980)

1982, Vision, David Marr W. H. Freeman and Company 2010: MIT press (re-published)

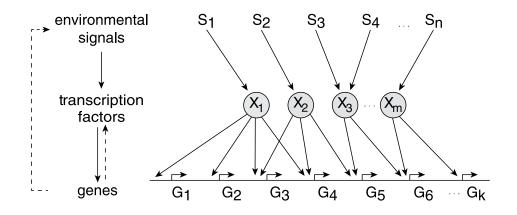


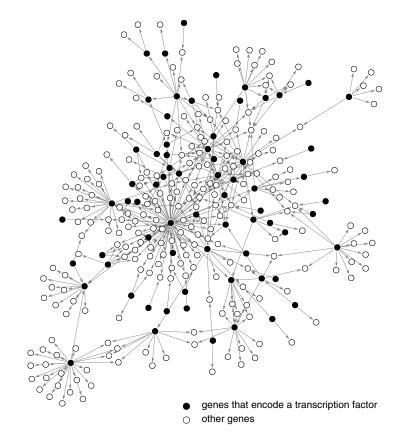
Marr's Tri-Level in Bacteria metabolism

- The Lac Operon in *E. coli*, a Molecular Logic Gate.
- The Problem: Should a bacterium produce enzymes to digest lactose?
- The Inputs:
 - OInput 1: Is lactose present?
 OInput 2: Is glucose present?
- The Algorithm:

IF (Lactose is PRESENT) AND (Glucose is ABSENT) THEN PRODUCE digestive enzymes. ELSE, DO NOTHING.

- The Biological Implementation:
 - OA repressor protein blocks the genes for the lactose enzymes (the "OFF" state).
 - O**IF** lactose is present, it binds to the repressor, pulling it off the DNA. This is like a NOT gate: the presence of lactose removes a "stop" signal.
 - OBUT, the gene still needs a "GO" signal. This comes from the protein CRP, which is only active IF glucose is absent (NOT gate on the glucose signal).
 - OThe system requires both the "stop signal" to be removed *and* the "go signal" to be present—a logical AND operation.




Hernan G. Garcia and Rob Phillips, Physical genomics

Marr's Tri-Level in *Bacteria metabolism*

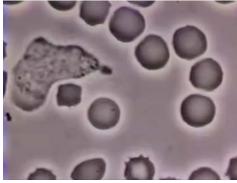
- Transcription factors « symbols » that provide an internal representation of the environment.
- 300 TFs provide a 300-dimensional representation of the world to regulate ~4500 genes.

U. Alon. An introduction to systems biology. CRC Press (2020)

Hernan G. Garcia and Rob Phillips, Physical genomics

Marr's Tri-Level in *Chemotaxis*

Computation: function/purpose

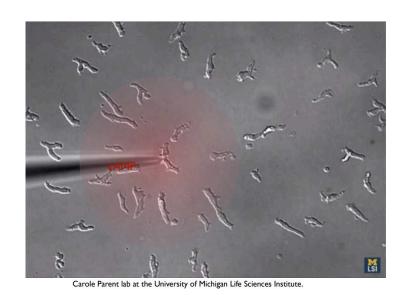

- Read a gradient of concentration of a molecule
- o Orient motility towards the high concentration of the molecule
- Keep animal in molecule-rich environment.
- o Or opposite: avoid toxic molecule and move away.
- Constraints: cell size

Algorithm: strategy/solution

- Read a difference in concentration in space (for large enough cells)
 - symmetry breaking (instability via feedback)
- Read a difference in concentration in time (for small cells eg. Bacteria)
 - cellular sensing, adaptation, memory and comparison.

Implementation:

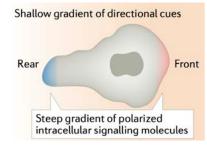
- Molecular detection
- Amplification, adaptation and memory



https://www.youtube.com/watch?v=I_xh-bkiv_

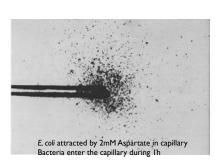
David Rogers at Vanderbilt University.

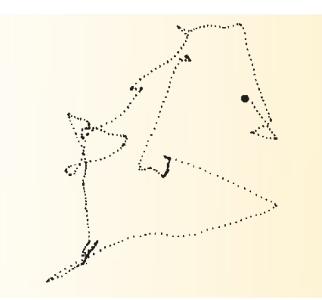
Eukaryotic cells read and respond to a spatial gradient of chemokine Cell polarisation in response to gradient



PIP3 sensor (PH-GFP)

cell moveme
P. Devreotes lab

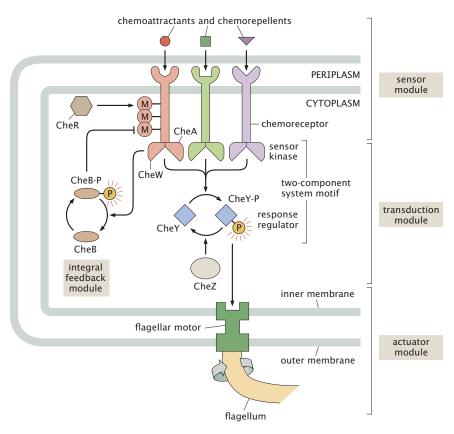

receptor
transduction
network
cell polarization
mechanical response


Dictyostelium discoideum cells are attracted by cAMP released in a gradient from a pipette

Chemotaxis in Bacteria entails detection of a temporal gradient

R. Macnab. D.E. Koshland. PNAS. 69:2509-2512 (1972)

Problem: Bacteria can go up an exponential gradient, over 20mm.


For a 2µm cell to detect such a gradient, they would need to detect 0.0001% difference on both ends

- Bacteria are too small to detect spatial gradient of concentration
- Bacteria detect a temporal change in concentration of chemoattractant
- As they navigate in space, they detect in time different concentrations
- This requires comparison of 2 measurements and memory

Chemoreceptor physiology

Key properties of chemotactic network

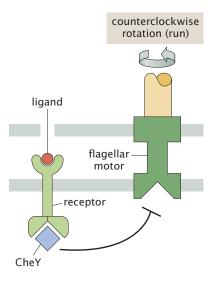
- Sensitivity Gain : output/input ratio
- Adaptation: reset after input
- High amplitude range

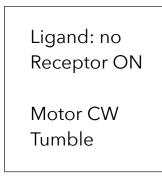
Molecular circuit driving chemotaxis

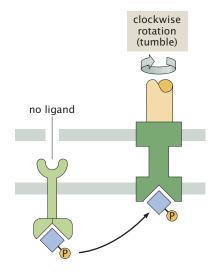
chemoattractants and chemorepellents **INPUT** PERIPLASM sensor module CYTOPLASM Sensitivity - chemorec<mark>e</mark>ptor CheA sensor kinase CheW two-domponent system motif CheY-P transduction response module regulator CheZ inner membrane flagellar motor actuator module **OUTPUT** outer membrane flagellum

R. Phillips, The Molecular Switch: signaling and allostery. *Princeton Univ. Press.* 2020 45

Molecular circuit driving chemotaxis


Regulation of tumbling frequency


- Ligand binding: CheY is unphosphorylated and does not signal: Receptor is OFF, rotation is CCW
- No ligand: CheY is phosphorylated, signals: Receptor is ON, rotation is CW CheY-P binds the motor and reverses rotation


Activity of receptor (R and CheA) a(t) = f[L(t)]

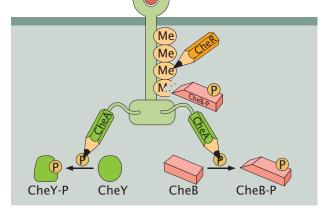
L: Ligand

Ligand: bound Receptor OFF **INPUT OUTPUT** Motor CCW Run

Molecular circuit driving chemotaxis

chemoattractants and chemorepellents **INPUT** PERIPLASM sensor module CYTOPLASM CheR chemoreceptor sensor Activity of receptor (R and CheA) kinase CheW CheB-P a(t) = f[L(t), m(t)]two-component system motif CheY-P transduction L: Ligand response module regulator Che *m*: methylation state CheB integral feedback More methylation → higher CheZ module inner membrane CheA autophosphorylation rate flagellar motor **OUTPUT** actuator module outer membrane flagellum

Adaptation


R. Phillips, The Molecular Switch: signaling and allostery. *Princeton Univ. Press.* 2020 47

Logic of adaptation

- Cells have a built-in short term memory to compare present and recent past and thereby read the concentration gradient
- Methylation and demethylation take a few seconds and thus reflect receptor activity a few seconds ago (« memory »).
- Receptor occupancy by ligand influences the current activity state (which takes a fraction of a second).
- By comparing the activity state of the cell (CheA) and methylation, the cell can compute how signal evolved in a few seconds, whether it increased, or decreased.

$$a(t) = f[L(t), m(t)]$$

$$E(t)$$
Fast (<<|s)

Longer (2-3 s)

m(t)

Thomas LECUIT 2025-2026

Logic and implementation of adaptation

Core of adaptation: Resetting

 Methylation is updated by receptor activity (and ligand binding): Methylation is mediated by CheR.

The demethylase CheB is activated via phosphorylation by CheA, and thus by ligand binding to the receptor.

- o Without ligand L, the receptor is on, CheA is active and so CheB is more active as a demethylase, and will convert the receptor into the off state. The response is damped: the activity a(t) decreases.
- Conversely, with ligand L, the receptor is off, CheB is less active, methylation accumulates, and the receptor becomes on. Its activity a(t) increases.

Integral feedback

• Error between activity and set point.

 $e(t)=a(t)-a^*$ a* (set-point, corresponds to average methylation state. Encoded in CheR/CheB activities on R)

It integrates this error over time into the methylation level m(t): slow variable that measures the past history.

o If activity
$$a(t)$$
 too high → decrease $m(t)$

$$dm/dt = k_R (1-a) - k_B a$$

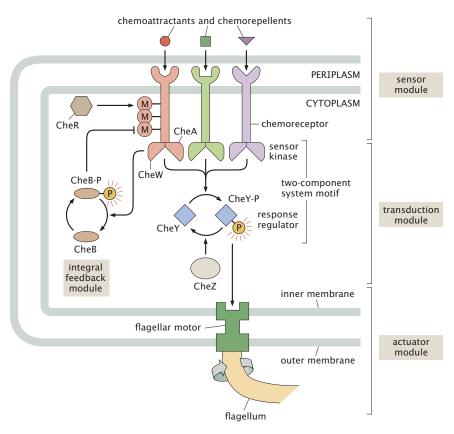
$$a(t) = f[L(t), m(t)]$$

CheB-P

 \circ If a(t) too low \rightarrow increase m(t)

instantaneous slow ir

slow integral of past


Active \mathcal{E}_A

Inactive

 ε_I

Chemoreceptor physiology

Key properties of chemotactic network


- Sensitivity Gain : output/input ratio
- Adaptation: reset after input
- High amplitude range



Spatial patterning across scales

• Embryo segmentation

0.5 mm – 1 hour

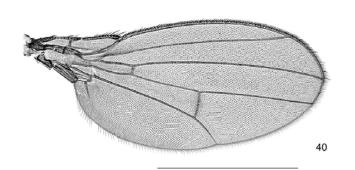
Shinji Takada

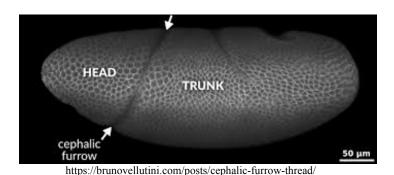
• Plumage/pigmentation pattern

$$0.5 \text{ mm} - 2 \text{ days}$$

Interface Focus (2012) 2, 433-450 doi:10.1098/rsfs.2011.0122

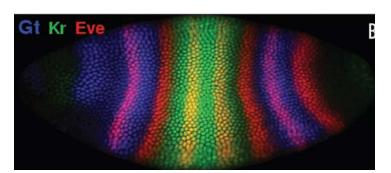
5 mm – 10 days

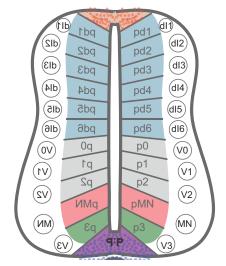

Morphogen gradient


- Computation: function/purpose
 - o Define robustly discrete regions with clear spatial boundaries in a field of cells
 - Patterning has the property of scaling (keep proportions as size varies)
- Algorithm: strategy/solution
 - Produce a spatial gradient of a continuous input variable across the field
 - Read the value of this variable
 - o Respond non-linearly to input to produce a sharp spatial boundary in output value
 - Scaling algorithm: eg. expansion-repression integral feedback control M 📥 Expander
- Implementation:
 - Chemical gradient: eg. Exponential decay profile with local source, diffusion and degradation.
 - o Control of molecule diffusion/transport and degradation to tune the length scale of gradient
 - Cooperative effect in molecular response network: eg. Transcription factor binding on DNA promoter/enhancer sequences.
 - Scaling: not clear yet...

Morphogen gradient: Computational level

Define discrete regions with clear spatial boundaries in a field of cells

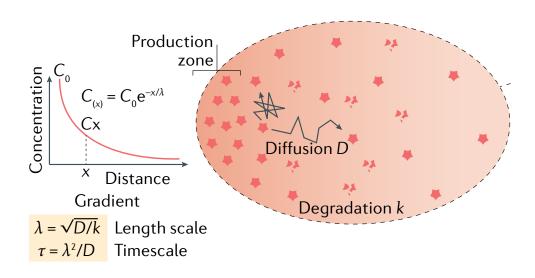


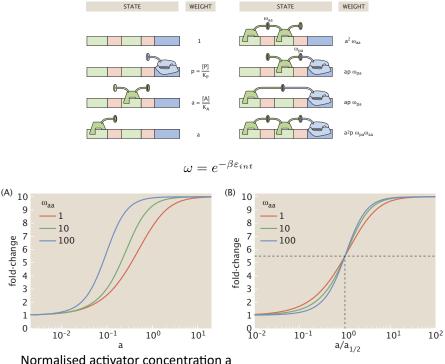


embryology.med.unsw.edu.au/

Eric Théveneau Toulouse CBI 100 µm

V1 V2 V3

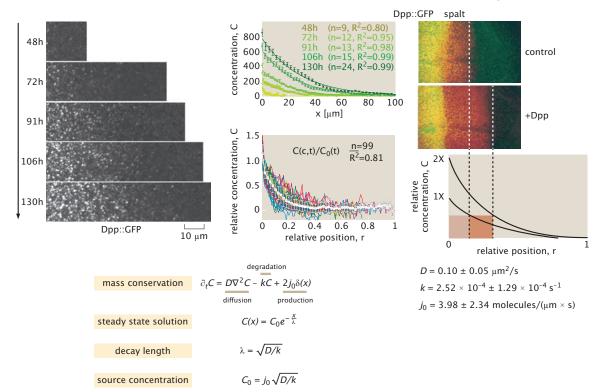


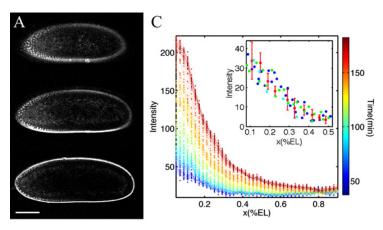

Morphogen gradient: Algorithmic level

Gradient of continuous variable

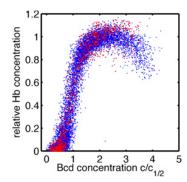
Collinet C. & Lecuit T. Nature Rev. Mol. Cell Biol., 2021 doi.org/10.1038/s41580-020-00318-6

Non-linear response and partitioning


Normalised activator concentration a


Hernan G. Garcia and Rob Phillips, Physical genomics

Morphogen gradient: Implementational level


Wing: BMP molecular gradient and response

Embryo: Bicoid gradient and response

T. Gregor et al and D. Tank. Cell 130, 141-152 (2007)

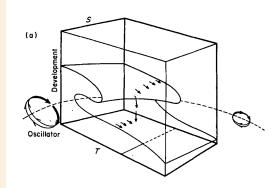
T. Gregor et al and W. Bialek. Cell 130, 153-164, 2007

A. Kicheva et al, *Science* 2000 A. Teleman et al, *Cell* 2000

Other algorithms: clock and wave front

- Computation: function/purpose
 - o Define discrete regions with clear spatial boundaries in a field of cells
- Algorithm: strategy/solution
 - Clock and wavefront model
 - Wave front of sudden cell state changes (discontinuity)
 - Clock: smooth oscillation of phase-linked cells
 - Slow posterior movement of the wave front

A Clock and Wavefront Model for Control of the Number of Repeated Structures during Animal Morphogenesis

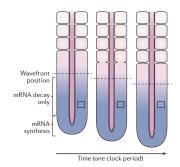

J. COOKET

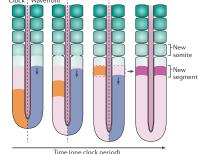
National Institute for Medical Research.

The Ridgeway, Mill Hill, London NW7 1AA, England
AND
E. C. ZEEMAN
Institute of Mathematics, University of Warwick,
Coventry, Warwick, England

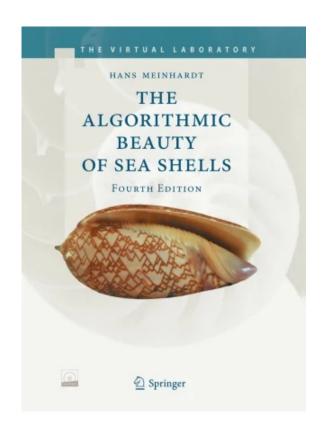
J. theor. Biol. (1976) 58, 455-476

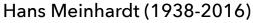
model involves an interacting "clock" and "wavefront". The clock is is a smooth cellular oscillator, for which cells throughout the embryo are assumed to be phase-linked. The wavefront is a front of rapid cell change moving slowly down the long axis of the embryo; cells enter a phase of rapid alteration in locomotory and/or adhesive properties at successively later times according to anterior-posterior body position. In the model, the smooth intracellular oscillator itself interacts with the possibility of the rapid primary change or its transmission within cells, thereby gating rhythmically the slow progress of the wavefront. Cells thus enter their rapid change of properties in a succession of separate populations, creating the pattern.

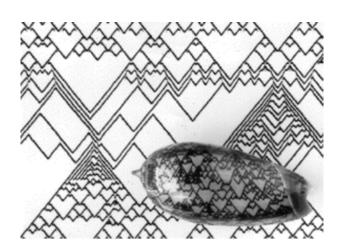



• Implementation:

- Chemical oscillator
- Molecular gradient
- Tissue growth



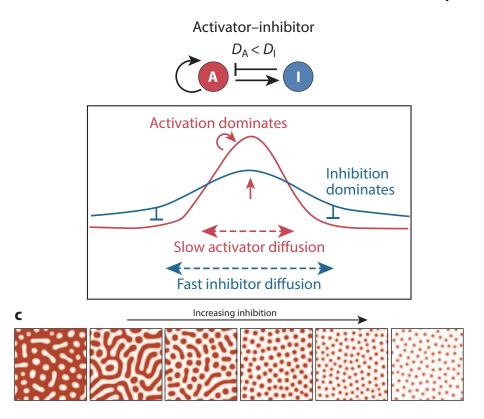


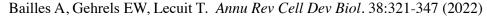

Thomas LECUIT 2025-2026

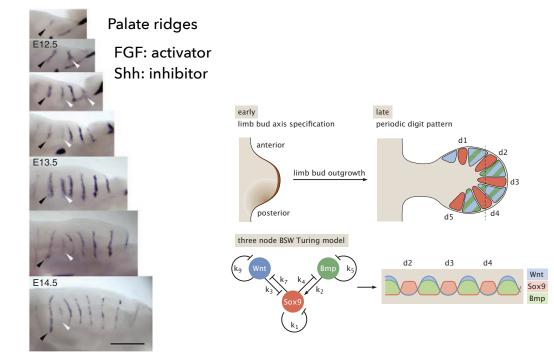
• Self-organised spatial and temporal instabilities

Thomas LECUIT 2025-2026

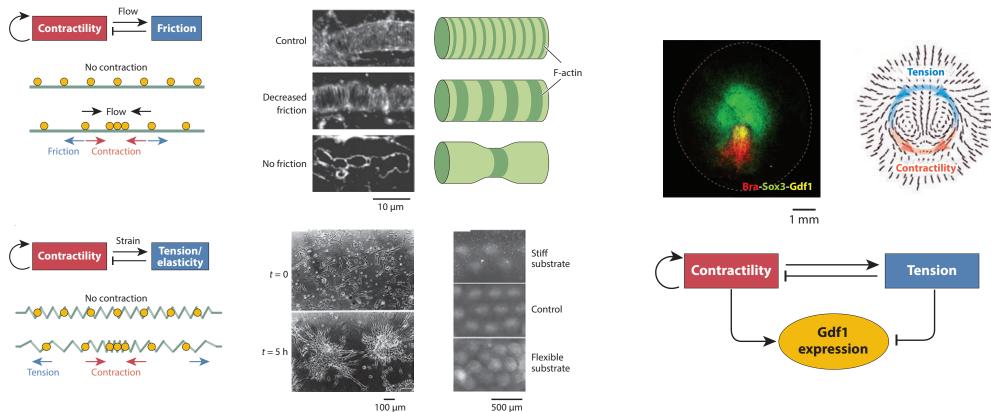
Turing-like spatial instabilities


- Computation: function/purpose
 - Generate patterns across a field without scaling
 - Do not specify specific location but rather spacing properties
- Algorithm: strategy/solution
 - Local excitation/Non-local inhibition
 - Local positive feedback and long-range repression
- Implementation:
 - Chemical: reaction diffusion (Turing patterns)
 - Mechanical: Local positive feedback of contractility
 Long range repression: friction, viscosity, or tension
 - Neural network: Local activation, Inhibition at a distance





Chemical implementation: Turing reaction-diffusion



Economou AD, et al. & JBA. Green *Nat Genet*. 44(3):348–51 (2012)

J. Raspopovic et al. and J. Sharpe. *Science* 345, 566 (2014)

COLLÈGE

Mechanical implementation: Turing-like instabilities

Thomas LECUIT 2025-2026

Bailles A, Gehrels EW, Lecuit T. Annu Rev Cell Dev Biol. 38:321-347 (2022)

Neuronal implementation: Turing-like instabilities

A Model for Shell Patterns Based on Neural Activity

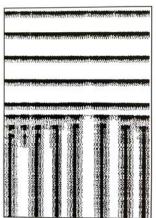
by

BARD ERMENTROUT

Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.

JOHN CAMPBELL

Department of Anatomy, University of California, Los Angeles, California 90024, U.S.A.


AND

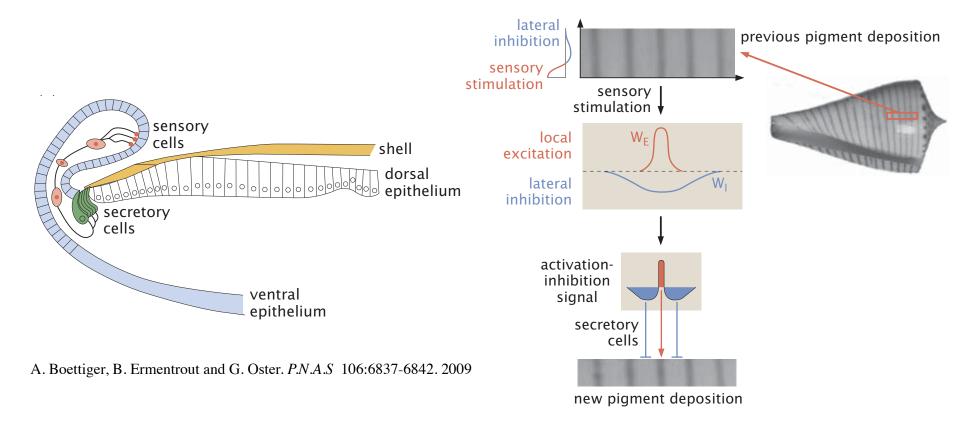
GEORGE OSTER

Departments of Biophysics and Entomology, University of California, Berkeley, California 94720, U.S.A.

The Veliger 28(4):369-388 (April 1, 1986)

Synchronous oscillations:
Delayed negative feedback
+ spatial coupling

Spatial patterns: local excitation + long range inhibition


Position →

Hans Meinhardt

The algorithmic beauty of seashells (Springer)

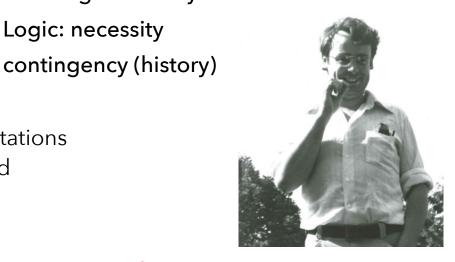
Neuronal implementation: Turing-like instabilities

Conclusion

Meaning: necessity

Logic: necessity

A framework to disentangle:


- Purpose(why): computation
- Strategy (how): algorithm
- Biology/physics (what): implementation

Unity of algorithmic level for different implementations Diversity of algorithmic level representations and solutions for a given function

Information provides a language to decipher the meaning and logic of living systems

VISION

A Computational Investigation into the Human Representation and Processing of Visual Information

David Marr (1945-1980)

1982, Vision, David Marr W. H. Freeman and Company 2010: MIT press (re-published)

In search of principles in biology

Henri Poincaré (1854-1912)

Jean Perrin (1870-1946)

on being a Bio-logician

« Le savant doit *ordonner*;

on fait la Science avec des faits comme une maison avec des pierres ; mais une accumulation de faits n'est pas plus une science qu'un tas de pierres n'est une maison. »

La science et l'hypothèse (1902)

« La Science remplace du visible compliqué par de l'*invisible simple*. » *Les Atomes* (1913)

Thomas LECUIT, chaire Dynamiques du vivant

Qu'est-ce que l'information biologique ? (II)

COURS: 20 novembre > 18 décembre 2025

COURS

Le jeudi de 10 h à 12 h Amphithéâtre Guillaume Budé

Jeudi 20 Novembre 2025

Introduction : approche computationelle du vivant

Jeudi 27 Novembre 2025

Complexité et information au cours du développement

Jeudi 4 Décembre 2025

Vision logique des flux d'information

Jeudi 11 Décembre 2025

Vision dynamique des flux d'information

Jeudi 18 Décembre 2025

Apprentissage non neuronal dans un système biologique

COLLOQUE

De 9h à 18h Amphithéâtre Maurice Halbwachs

Vendredi 26 juin 2026

Information flow and computation in living systems

Les cours et colloques sont gratuits, en accès libre, sans inscription préalable.

Image générée par une I.A. © T. Lecuit.

COLLÈGE DE FRANCE