Annuaire
du College de France

122¢ année

Résumé des cours et travaux

4 COLLEGE
¥/ DE FRANCE
1530




SCIENCES DU LOGICIEL

Xavier Leroy

Professeur au Collége de France

La série de cours et de séminaires « Sécurité du logiciel : quel role pour les langages
de programmation? » est disponible en audio et en vidéo sur le site internet du
College de France (https://www.college-de-france.fr/agenda/cours/securite-du-
logiciel-quel-role-pour-les-langages-de-programmation et https://www.college-de-
france.fr/agenda/seminaire/securite-du-logiciel-quel-role-pour-les-langages-de-
programmation), ainsi que le colloque « Probabilistic Programming » (https://www.
college-de-france.fr/fagenda/colloque/probabilistic-programming).

ENSEIGNEMENT

COURS - SECURITE DU LOGICIEL : QUEL ROLE
POUR LES LANGAGES DE PROGRAMMATION?

Comment un logiciel peut-il résister aux attaques et a l'utilisation malveillante?
C’est le probleme général de la sécurité du logiciel, et c’est un vaste probleme tant les
failles de sécurité sont nombreuses et variées, de la manipulation des utilisateurs a
I'observation et la perturbation des circuits de 'ordinateur, en passant par I'exploita-
tion astucieuse de « bugs » dans le code du logiciel.

Le cours a abordé cette problématique de sécurité du logiciel sous I’angle des lan-
gages de programmation et de leurs techniques de typage, d’analyse statique et de
vérification déductive. Cette approche est connue sous le nom de language-based
security dans la littérature. Le cours s’est efforcé de caractériser la contribution de
cette approche 2 la sécurité informatique, ainsi que ses limitations. Pour ce faire,

X. Leroy, « Sciences du logiciel », Annuaire du Collége de France. Résumé des cours et travaux, 122¢ année : 2021-2022,
2025, p. 21-29, https://journals.openedition.org/annuaire-cdf/20405.


https://www.college-de-france.fr/agenda/cours/securite-du-logiciel-quel-role-pour-les-langages-de-programmation
https://www.college-de-france.fr/agenda/cours/securite-du-logiciel-quel-role-pour-les-langages-de-programmation
https://www.college-de-france.fr/agenda/seminaire/securite-du-logiciel-quel-role-pour-les-langages-de-programmation
https://www.college-de-france.fr/agenda/seminaire/securite-du-logiciel-quel-role-pour-les-langages-de-programmation
https://www.college-de-france.fr/agenda/seminaire/securite-du-logiciel-quel-role-pour-les-langages-de-programmation
https://www.college-de-france.fr/agenda/colloque/probabilistic-programming
https://www.college-de-france.fr/agenda/colloque/probabilistic-programming

22 XAVIER LEROY

nous avons décrit un certain nombre de problemes de sécurité du logiciel ainsi que
les protections classiques contre ces probleémes, et avons comparé ces derniéres aux
garanties que I’on peut obtenir par 'approche language-based security.

Cours 1 - Sécurité du logiciel : introduction et études de cas
Le 10 mars 2022

Le premier cours a introduit la problématique de la sécurité du logiciel et montré
en quoi elle va au-dela de la problématique de la streté de fonctionnement : le logi-
ciel doit résister non seulement aux « bugs » et aux pannes accidentelles (stireté),
mais aussi aux attaques et a I'utilisation malveillante (sécurité). Nous avons ensuite
étudié trois attaques récentes et représentatives de la diversité des failles de sécurité
du logiciel : 'attaque Heartbleed sur les serveurs web utilisant la bibliotheque
OpenSSL, 4 base d’acces hors bornes dans des tampons mémoire; 'attaque
Log4Shell sur la bibliotheque de journalisation Log4j, qui injecte du code arbitraire
dans des données contrdlées par 'attaquant; attaque sur le smart contract DAO de
la cryptomonnaie Ethereum, exploitant la vulnérabilité de ce contrat vis-a-vis d’opé-
rations ré-entrantes.

Cours 2 - Flux d'information
Le 17 mars 2022

Certaines informations sont plus confidentielles que d’autres, ou plus dignes de
confiance que d’autres. Il faut donc restreindre les flux d’information pour garantir
que les informations confidentielles ne sont pas divulguées et que les informations
integres ne sont pas corrompues. Pour ce faire, le contréle d’accés aux ressources
informatiques ne suffit pas, il faut mettre en place des politiques de confidentialité,
comme celle de Bell et LaPadula, ou d’intégrité, comme celle de Biba. Nous avons
étudié comment contréler les flux d’information 4 travers un programme, soit dyna-
miquement, par des vérifications pendant I'exécution du programme, soit statique-
ment, 4 I’aide de systemes de types ou de logiques de programmes appliquées une fois
pour toutes au programme. Nous avons introduit la notion de non-interférence, une
caractérisation sémantique de Iabsence de flux illégaux, et esquissé comment
Iétendre 2 la déclassification de données confidentielles et a 'approbation de don-
nées non fiables.

Cours 3 - Isolation logicielle

Le 24 mars 2022

Les mécanismes d’isolation logicielle ont pour but d’exécuter un logiciel potentiel-
lement malveillant en 'empéchant d’attaquer d’autres logiciels s’exécutant dans le
méme environnement ou de compromettre les mécanismes de sécurité essentiels du



SCIENCES DU LOGICIEL 23

systeme d’exploitation et du matériel. Le cours a décrit et comparé plusieurs
approches de Iisolation logicielle : mémoire virtuelle, architectures & capacités, isola-
tion logicielle des fautes (par transformation du code machine) et isolation par le lan-
gage de programmation et ses interfaces logicielles (API, Application Programming
Interfaces). Nous avons étudié comment cette derniere approche se réalise dans le
langage Java (par une API 4 base de capacités et par I'inspection de la pile d’appels) et,
plus péniblement, dans le langage JavaScript (en utilisant finement la portée statique
des liaisons).

Cours 4 - Tempus fugit : attaques par observation du temps
Le 31 mars 2022

Le temps que prend un programme ou ses opérations élémentaires a s’exécuter
révele beaucoup de choses sur les données qu’il manipule. En partant de exemple de
la signature RSA, nous avons décrit comment attaquer un logiciel en observant ses
temps d’exécution, et comment contrer ces attaques en modifiant ’algorithme (mas-
quage des données) ou son implémentation (quantification du temps, etc.). La
mémoire cache des processeurs fournit un autre canal indirect d’information : le
temps que prend un acces mémoire révele des choses sur les cases mémoires qui ont
été récemment accédées, ce qui permet de monter des attaques, comme nous I’avons
montré sur 'exemple du chiffrement AES. La programmation dite « en temps
constant » (ou plus exactement en temps indépendant des données secrétes) est une
des manié¢res de contrer ces attaques par observation du temps et des caches. Nous
avons vu comment la caractériser en termes de flux d’information et comment la
mettre en pratique. Le cours s’est conclu par un apergu des attaques de type
« Spectre », qui combinent observation du cache et manipulation de I'exécution
spéculative du processeur.

Cours 5 - Typage et sécurité
Le 7 avril 2022

Qu’il soit vérifié dynamiquement (pendant I’exécution) ou statiquement (par ana-
lyse préalable), le typage est un aspect essentiel des langages de programmation de
haut niveau. Le cours a étudié les contributions du typage a la sécurité des logiciels,
des garanties de base (stireté des valeurs et de la mémoire) indispensables pour I'isola-
tion logicielle 4 des garanties d’intégrité plus fines s’appuyant sur P'abstraction de
types et sur le typage statique des ressources et de leur possession (ownership et
borrowing, comme dans le langage Rust). Nous avons ensuite montré comment
appliquer le typage statique 4 du code mobile, par vérification de code intermédiaire
(comme le bytecode JVM du langage Java) ou de code machine, allant jusqu’a la
notion tres générale de code auto-certifiant (proof-carrying code).



24 XAVIER LEROY

Cours 6 - Compilation et sécurité
Le 14 avril 2022

Compiler un programme source en code machine peut étre 'occasion de le rendre
plus résistant A certaines attaques. Par exemple, des tests systématiques de bornes lors
des acces aux tableaux peuvent étre introduits pendant la compilation, puis optimisés
pour en réduire le surcott en temps d’exécution, augmentant ainsi grandement la
sécurité a cotit raisonnable. Cependant, de nombreuses optimisations de compila-
tion, pourtant sémantiquement correctes, peuvent affaiblir la sécurité du pro-
gramme. C’est notamment le cas des optimisations qui supposent 'absence de
comportements indéfinis dans le programme source. Nous avons montré comment
caractériser ces différences de sécurité entre un fragment de programme source et son
code compilé a I'aide d’outils sémantiques classiques : I'équivalence observationnelle
etle probleme de la full abstraction. Nous avons présenté quelques approches récem-
ment proposées pour compiler « en toute sécurité », c’est-d-dire en préservant les
équivalences observationnelles dans les deux directions.

Cours 7 - Calculer sur des données chiffrées ou privées
Le 21 avril 2022

Le chiffrement est tres efficace pour protéger le secret des données au repos (stoc-
kage) et en transit (réseaux). Pourrait-il le protéger également pendant les calculs sur
ces données? Le cours a introduit la notion de chiffrement homomorphe, permet-
tant de calculer sur des données chiffrées sans avoir la clé de déchiffrement, et décrit
les grandes lignes de I'approche de Gentry (2009), la premiere réalisation de ce
concept. Le chiffrement homomorphe, ainsi que d’autres protocoles cryptogra-
phiques, fournit des solutions au probléme du calcul multipartite sécurisé, ot les
participants calculent ensemble une fonction de leurs données privées sans rien révé-
ler de plus que le résultat final. Bien qu’encore tres cotiteuses en temps d’exécution,
ces approches cryptographiques apportent une réponse mathématiquement solide
au probleme de calculer sur des données confidentielles sans fuites d’information.

SEMINAIRE (EN RELATION AVEC LE SUJET DU COURS)

Séminaire 1 - Influence de la qualité des spécifications
sur la sécurité logicielle

Olivier Levillain (Télécom SudParis), le 17 mars 2022

Les systtmes d’information que nous utilisons quotidiennement sont d’une
grande complexité. Ils reposent en particulier sur I'implémentation de protocoles
réseau et sur 'interprétation de documents aux formats variés. Ce premier séminaire
de I'année a porté sur les spécifications décrivant ces protocoles et ces formats. Le



SCIENCES DU LOGICIEL 25

conférencier a montré que la maniere dont ils sont spécifiés peut avoir des consé-
quences sur la sécurité de leurs implémentations, en étudiant trois exemples : Mini-
PNG, un format d’images utilisé dans un module d’enseignement en programmation;
le format PDF; le protocole TLS.

Séminaire 2 - Differential Privacy: From the central model
to the local model and their generalization

Catuscia Palamidessi (Inria), le 24 mars 2022

La confidentialité différentielle (DP, Differential Privacy) est 'une des meilleures
approches connues pour protéger des données personnelles tout en permettant d’en
extraire des informations statistiques utiles. L’idée centrale est d’ajouter du bruit
aléatoire aux données publiées, en quantité soigneusement choisie pour préserver a la
fois la confidentialité et 'utilité des données.

La conférencitre a introduit le probléme de 'anonymisation des données person-
nelles et motivé I'utilisation d’approches probabilistes. Elle a présenté I'approche
classique DP, qui repose sur un traitement centralisé des données, puis une variante
plus récente, LDP (Local Differential Privacy), ot le bruitage des données est réalisé
directement par les participants. Ensuite, elle a introduit le modele d-privacy, qui
unifie le modele centralisé et le modele distribué et s’applique 2 tout domaine
métrique, et a2 montré comment 'appliquer aux données de géolocalisation.

Séminaire 3 - Verified implementations for real-world
cryptographic protocols

Karthikeyan Bhargavan (Inria), le 31 mars 2022

La sécurité du Web repose sur des protocoles cryptographiques : des programmes
distribués qui utilisent le chiffrement et la signature pour protéger les données sen-
sibles des nombreuses attaques que les adversaires qui contrélent le réseau peuvent
mener. Malgré trente ans d’études, on continue a découvrir des vulnérabilités théo-
riques ou pratiques dans les protocoles cryptographiques du Web, notamment TLS
(Transport Layer Security). Le conférencier a décrit plusieurs de ces vulnérabilités et
montré comment la vérification formelle permet d’exclure certaines classes d’at-
taques sur les implémentations de protocoles modernes tels que TLS 1.3 et Signal.

Séminaire 4 - Attaques par injection de fautes et protection logicielle
Karine Heydemann (Sorbonne Université), le 7 avril 2022

Les attaques en faute sont une classe particuliere d’attaques qui nécessitent
a priori un acces physique a la cible matérielle et visent a perturber son environne-
ment d’exécution pour altérer le comportement de I'application qui s’y exécute. Ces
attaques sont puissantes : elles permettent de compromettre la sécurité d’algorithmes



26 XAVIER LEROY

cryptographiques prouvés siirs, de retrouver des informations sensibles, de contour-
ner des protections ou de prendre le contréle d’un systeme. La conférenci¢re a
d’abord présenté les attaques par injection de fautes : moyens d’injection, effets des
fautes, et leur exploitation pour réaliser des attaques. Elle a ensuite présenté les pro-
tections logicielles connues contre ces attaques et étudié leurs limites.

Séminaire 5 - Obfuscation du logiciel : brouiller le code
pour protéger les programmes

Sandrine Blazy (université de Rennes 1), le 14 avril 2022

L’obfuscation de logiciel vise 4 brouiller le code en langage machine du logiciel afin
qu’il soit difficile & comprendre et 4 analyser. C’est une technique trés utile pour la
sécurité par 'obscurité. Ce brouillage peut étre effectué 4 différents niveaux et s’ap-
plique 4 des programmes n’ayant pas été congus avec des objectifs de sécurité. Aussi
de nombreuses stratégies de brouillage ont-elles été proposées dans la littérature. La
conférenciére a présenté un certain nombre de ces stratégies et étudié la correction
sémantique des plus récentes.

Séminaire 6 - Transient execution attacks and defenses
Frank Piessens (K.U. Leuven), le 21 avril 2022

Depuis la découverte des attaques sur les exécutions transitoires, nous savons que
la micro-architecture des ordinateurs a un impact majeur sur la sécurité du cloud et
autres ordinateurs qui font tourner des codes provenant de plusieurs acteurs. Le
conférencier a décrit ces attaques sur les exécutions transitoires et les protections cor-
respondantes. Pour ce faire, il a utilisé des techniques de modélisation provenant de
la recherche en langages de programmation, et montré comment décrire les exécu-
tions out-of-order et spéculatives, ainsi que les attaquants capables d’observer et de
modifier Pétat de la micro-architecture. Il a ensuite utilisé ces modeles pour décrire
plusieurs attaques sur les exécutions transitoires et pour présenter des protections
contre ces attaques, en insistant sur la définition précise des objectifs de sécurité
attendus pour ces protections.

COLLOQUE - PROBABILISTIC PROGRAMMING

Les 29 et 30 juin 2022

La programmation probabiliste fournit de puissants outils pour la modélisation
statistique. En s’appuyant sur la sémantique formelle, les compilateurs et autres
outils en provenance des langages de programmation, la programmation probabiliste
construit des évaluateurs efficaces pour les modeles et les applications en apprentis-
sage statistique, utilisant les théories et les algorithmes d’inférence provenant des sta-



SCIENCES DU LOGICIEL 27

tistiques. Ce colloque, coorganisé avec Jean-Baptiste Tristan (Boston College), avait
pour objectif de décrire des progres récents et des applications de la programmation
probabiliste en croisant les points de vue provenant des langages de programmation,
des statistiques et de I'apprentissage. Il s’est tenu les 29 et 30 juin 2022 et a réuni
Francis Bach (Inria), Gilles Barthe (Max Planck Institute), Aulim Giines Baydin
(Oxford University) Guillaume Baudart (Inria), Nicolas Chopin (ENSAE), Andrew
Gelman (Columbia University), Andrew D. Gordon (Microsoft Research), Maria
Gorinova (Twitter), Vikash K. Mansinghka (MIT), Jan-Willem van de Meent
(University of Amsterdam), Xavier Rival (Inria), Joseph Tassarotti (Boston College)
et Christine Tasson (Sorbonne Université).

RECHERCHE

Les activités de recherche de la chaire Sciences du logiciel s’effectuent dans le cadre
de I’équipe-projet Inria Cambium, commune au Collége de France et a 'Inria Paris
et dirigée par Frangois Pottier, directeur de recherche Inria.

La recherche de I’équipe Cambium vise 2 améliorer la fiabilité et la sécurité du logi-
ciel en faisant progresser les langages de programmation et les méthodes formelles de
vérification de logiciel. Les principaux résultats de ’équipe pendant I'année universi-
taire 2021-2022 sont listés ci-dessous. Une description plus détaillée est disponible
dans le rapport annuel d’activité Inria de 'équipe, https://raweb.inria.fr/rapportsac-
tivite/ RA2021/cambium/.

VERIFICATION DEDUCTIVE DE PROGRAMMES

Léo Stefanesco, ATER du College de France, a soutenu sa these, dans laquelle il
étend la logique de séparation concurrente Iris pour montrer des simulations entre
implémentations concrétes et spécifications abstraites de modules. Nous avons égale-
ment développé une nouvelle logique de programmes pour raisonner sur la consom-
mation mémoire en présence de récupération automatique par GC. Enfin, nous
avons formellement vérifié la correction et la complexité d’une structure de donnée
transiente (2 la fois éphémere et persistante).

VERIFICATION DE COMPILATEURS

Basile Clément a poursuivi ses travaux de these sur la validation a posteriors de
compilateurs pour langages tensoriels en développant et en intégrant au compila-
teur Halide une implémentation de son algorithme de validation. En collaboration
avec Andrew Appel (université de Princeton), nous avons vérifié formellement une



28 XAVIER LEROY

structure de données de type arbre préfixe avec représentation canonique, et I'avons
intégrée dans le compilateur CompCert afin de réduire les temps de compilation. Nous
avons également ajouté & CompCert le traitement de la construction Generic du
langage C11 et un mécanisme de génération de syntaxe abstraite CompCert C utili-
sable par des outils de vérification déductive. Enfin, nous avons démontré la correc-
tion de loptimisation tail modulo constructor d’OCaml en utilisant la logique
relationnelle d’Iris.

PROGRAMMATION FONCTIONNELLE TYPEE EN OCAML

Nous avons entamé une formalisation du systeme de modules du langage OCaml
par traduction vers un langage intermédiaire typé plus simple. Cette formalisation
met en évidence des irrégularités dans les modules d’OCaml et suggere des pistes
d’amélioration. En parallele, nous avons poursuivi le travail préparatoire 4 'intégra-
tion du parallélisme 3 mémoire partagée et des gestionnaires d’effets dans OCaml.
Enfin, nous avons étudié la question du debootstrap du compilateur OCaml, c’est-3-
dire la possibilité de le reconstruire sans amorgage depuis une version antérieure du
compilateur.

MODELISATION ET TEST DE MODELES MEMOIRE
FAIBLEMENT COHERENTS

Nous avons poursuivi I'étude de formalismes axiomatiques et sémantiques pour
décrire les modeles mémoire fournis par les processeurs multicoeurs et les langages de
programmation contemporains. Les travaux récents, en collaboration avec I'entre-
prise ARM Ltd, portent sur la modélisation et le test des mécanismes de gestion de la
mémoire virtuelle dans ’architecture ARMvS.

PUBLICATIONS

Bour F. et Pottier F., « Faster reachability analysis for LR(1) parsers », iz : SLE 2021:
Proceedings of the 14th ACM SIGPLAN International Conference on Software Language
Engineering, Chicago, Association for Computing Machinery (ACM), 2021, p. 113-125,
https://doi.org/lO.1145/3486608.3486903 [HAL : hal-03478172].

Courant N., Lepiller J. et Scherer G., « Debootstrapping without archeology: Stacked
implementations in Camlboot », The Art, Science, and Engineering of Programming, vol. 6,
n° 3, 2022, art. 13, https://doi.org/10.22152/programming-journal.org/2022/6/13 [HAL :
hal-03917754].

Madiot J.-M. et Pottier F., « A separation logic for heap space under garbage collection »,
Proceedings of the ACM on Programming Languages, vol. 6, n°® POPL, 2022, art. 11, https://
doi.org/10.1145/3498672 [HAL : hal-03478162].


https://doi.org/10.1145/3486608.3486903
https://doi.org/10.22152/programming-journal.org/2022/6/13
https://doi.org/10.1145/3498672
https://doi.org/10.1145/3498672

SCIENCES DU LOGICIEL 29

Madiot J.-M., Pous D. et Sangiorgi D., « Modular coinduction up-to for higher-order
languages via first-order transition systems », Logical Methods in Computer Science, vol. 17,
n° 3, 2021, https://doi.org/10.46298/1mcs-17(3:25)2021 [HAL : hal-03350199].

Meével G. et Jourdan J.-H., « Formal verification of a concurrent bounded queue in a weak
memory model », Proceedings of the ACM on Programming Languages, vol. 5, n® ICFP, 2021,
art. 66, httpS://dOi.Org/lO.l145/3473571 [HAL : hal-03298759].

Moine A., Charguéraud A. et Pottier F., « Specification and verification of a transient stack »,
in : CPP 2022: Proceedings of the 11th ACM SIGPLAN International Conference on Certified
Programs and Proofs, Philadelphie, Association for Computing Machinery (ACM), 2022,
p- 82-99, https://doi.org/10.1145/3497775.3503677 [HAL : hal-03472028].

Oliveira Vale A., Mellies P.-A., Shao Z., Koenig J. et Stefanesco L., « Layered and object-based
game semantics », Proceedz'ng: of the ACM on Programming Languages, vol. 6, n° POPL,
2022, art. 42, https://doi.org/10.1145/3498703 [HAL : hal-03456034].

Raad A., Maranget L. et Vafeiadis V., « Extending Intel-x86 consistency and persistency:
Formalising the semantics of Intel-x86 memory types and non-temporal stores », Proceedings
of the ACM on Programming Languages, vol. 6, n° POPL, 2022, art. 22, https://doi.
0rg/10.1145/3498683 [HAL : hal-03426997].

Stefanesco L., Asynchronous and Relational Soundness Theorems for Concurrent Separation
Logic, theése de doctorat, sous la direction de P.-A. Melli¢s, université de Paris, 2021, https://
theses.hal.science/tel-03526298.


https://doi.org/10.46298/lmcs-17(3:25)2021
https://doi.org/10.1145/3473571
https://doi.org/10.1145/3497775.3503677
https://doi.org/10.1145/3498703
https://doi.org/10.1145/3498683
https://doi.org/10.1145/3498683
https://theses.hal.science/tel-03526298
https://theses.hal.science/tel-03526298



