
122

A
nn

ua
ire

  d
u 

 C
ol

lèg
e  

de
  F

ra
nc

e  

Résumé des cours et travaux

Annuaire  
du Collège de France

122e année

Philippe Aghion
Edouard Bard
Yadh Ben Achour
Samantha Besson
Patrick Boucheron
Jean-Pierre Brun
Dominique Charpin
Anne Cheng
Françoise Combes
Jean Dalibard
Stanislas Dehaene
François Déroche
Bernard Derrida
Hugues de Thé
Denis Duboule
Edhem Eldem

François-Xavier Fauvelle
Marc Fontecave
Jean-Luc Fournet
Sonia Garel
Antoine Georges
Tatiana Giraud
Christian Gollier
Timothy Gowers
Frantz Grenet
Edith Heard
Marc Henneaux
François Héran
Jean-Jacques Hublin
Jean-François Joanny
Henry Laurens
Thomas Lecuit
Xavier Leroy
Daniel Lincot
Pierre-Louis Lions

Wendy Mackay
Stéphane Mallat
Alberto Manguel
Dario Mantovani
William Marx
Pierre-Michel Menger
Bảo Châu Ngô
Vinciane Pirenne-Delforge
Lluis Quintana-Murci
François Recanati
Luigi Rizzi
Jean-Noël Robert
Thomas Römer
Rémy Slama
Jean-Marie Tarascon
Claudine Tiercelin

Avec les  
contributions de :

ISSN 0069-5580
ISBN 978-2-7226-0830-6

39
 €

La version numérique de  
ce volume 122 de l’Annuaire  
du Collège de France est 
disponible sur le portail 
d’OpenEdition : 

https://journals.openedition.org 
/annuaire-cdf/19092.

La 122e édition de l’Annuaire du 
Collège de France reflète l’activité 
scientifique de l’institution pour 
l’année académique 2021-2022. 

Elle contient notamment  
les résumés détaillés des enseignements 
ainsi qu’une présentation des recherches  
menées par les professeurs du Collège de 
France, leurs laboratoires et équipes  
de recherche.



X. Leroy, « Sciences du logiciel », Annuaire du Collège de France. Résumé des cours et travaux, 122e année : 2021-2022, 
2025, p. 21-29, https://journals.openedition.org/annuaire-cdf/20405.

SCIENCES DU LOGICIEL

Xavier Leroy
Professeur au Collège de France

La série de cours et de séminaires « Sécurité du logiciel : quel rôle pour les langages 
de programmation ?  » est disponible en audio et en vidéo sur le site internet du 
Collège de France (https://www.college-de-france.fr/agenda/cours/securite-du-
logiciel-quel-role-pour-les-langages-de-programmation et https://www.college-de-
france.fr/agenda/seminaire/securite-du-logiciel-quel-role-pour-les-langages-de-
programmation), ainsi que le colloque « Probabilistic Programming » (https://www.
college-de-france.fr/agenda/colloque/probabilistic-programming).

ENSEIGNEMENT

COURS – SÉCURITÉ DU LOGICIEL : QUEL RÔLE  
POUR LES LANGAGES DE PROGRAMMATION ?

Comment un logiciel peut-il résister aux attaques et à l’utilisation malveillante ? 
C’est le problème général de la sécurité du logiciel, et c’est un vaste problème tant les 
failles de sécurité sont nombreuses et variées, de la manipulation des utilisateurs à 
l’observation et la perturbation des circuits de l’ordinateur, en passant par l’exploita-
tion astucieuse de « bugs » dans le code du logiciel.

Le cours a abordé cette problématique de sécurité du logiciel sous l’angle des lan-
gages de programmation et de leurs techniques de typage, d’analyse statique et de 
vérification déductive. Cette approche est connue sous le nom de language-based 
security dans la littérature. Le cours s’est efforcé de caractériser la contribution de 
cette approche à la sécurité informatique, ainsi que ses limitations. Pour ce faire, 

https://www.college-de-france.fr/agenda/cours/securite-du-logiciel-quel-role-pour-les-langages-de-programmation
https://www.college-de-france.fr/agenda/cours/securite-du-logiciel-quel-role-pour-les-langages-de-programmation
https://www.college-de-france.fr/agenda/seminaire/securite-du-logiciel-quel-role-pour-les-langages-de-programmation
https://www.college-de-france.fr/agenda/seminaire/securite-du-logiciel-quel-role-pour-les-langages-de-programmation
https://www.college-de-france.fr/agenda/seminaire/securite-du-logiciel-quel-role-pour-les-langages-de-programmation
https://www.college-de-france.fr/agenda/colloque/probabilistic-programming
https://www.college-de-france.fr/agenda/colloque/probabilistic-programming


22	 Xavier leroy	

nous avons décrit un certain nombre de problèmes de sécurité du logiciel ainsi que 
les protections classiques contre ces problèmes, et avons comparé ces dernières aux 
garanties que l’on peut obtenir par l’approche language-based security.

Cours 1 – Sécurité du logiciel : introduction et études de cas

Le 10 mars 2022

Le premier cours a introduit la problématique de la sécurité du logiciel et montré 
en quoi elle va au-delà de la problématique de la sûreté de fonctionnement : le logi-
ciel doit résister non seulement aux « bugs » et aux pannes accidentelles (sûreté), 
mais aussi aux attaques et à l’utilisation malveillante (sécurité). Nous avons ensuite 
étudié trois attaques récentes et représentatives de la diversité des failles de sécurité 
du logiciel  : l’attaque Heartbleed sur les serveurs web utilisant la bibliothèque 
OpenSSL, à base d’accès hors bornes dans des tampons mémoire ; l’attaque 
Log4Shell sur la bibliothèque de journalisation Log4j, qui injecte du code arbitraire 
dans des données contrôlées par l’attaquant ; l’attaque sur le smart contract DAO de 
la cryptomonnaie Ethereum, exploitant la vulnérabilité de ce contrat vis-à-vis d’opé-
rations ré-entrantes.

Cours 2 – Flux d’information

Le 17 mars 2022

Certaines informations sont plus confidentielles que d’autres, ou plus dignes de 
confiance que d’autres. Il faut donc restreindre les flux d’information pour garantir 
que les informations confidentielles ne sont pas divulguées et que les informations 
intègres ne sont pas corrompues. Pour ce faire, le contrôle d’accès aux ressources 
informatiques ne suffit pas, il faut mettre en place des politiques de confidentialité, 
comme celle de Bell et LaPadula, ou d’intégrité, comme celle de Biba. Nous avons 
étudié comment contrôler les flux d’information à travers un programme, soit dyna-
miquement, par des vérifications pendant l’exécution du programme, soit statique-
ment, à l’aide de systèmes de types ou de logiques de programmes appliquées une fois 
pour toutes au programme. Nous avons introduit la notion de non-interférence, une 
caractérisation sémantique de l’absence de flux illégaux, et esquissé comment 
l’étendre à la déclassification de données confidentielles et à l’approbation de don-
nées non fiables.

Cours 3 – Isolation logicielle

Le 24 mars 2022

Les mécanismes d’isolation logicielle ont pour but d’exécuter un logiciel potentiel-
lement malveillant en l’empêchant d’attaquer d’autres logiciels s’exécutant dans le 
même environnement ou de compromettre les mécanismes de sécurité essentiels du 



	Sc iences du logiciel	 23

système d’exploitation et du matériel. Le cours a décrit et comparé plusieurs 
approches de l’isolation logicielle : mémoire virtuelle, architectures à capacités, isola-
tion logicielle des fautes (par transformation du code machine) et isolation par le lan-
gage de programmation et ses interfaces logicielles (API, Application Programming 
Interfaces). Nous avons étudié comment cette dernière approche se réalise dans le 
langage Java (par une API à base de capacités et par l’inspection de la pile d’appels) et, 
plus péniblement, dans le langage JavaScript (en utilisant finement la portée statique 
des liaisons).

Cours 4 – Tempus fugit : attaques par observation du temps

Le 31 mars 2022

Le temps que prend un programme ou ses opérations élémentaires à s’exécuter 
révèle beaucoup de choses sur les données qu’il manipule. En partant de l’exemple de 
la signature RSA, nous avons décrit comment attaquer un logiciel en observant ses 
temps d’exécution, et comment contrer ces attaques en modifiant l’algorithme (mas-
quage des données) ou son implémentation (quantification du temps, etc.). La 
mémoire cache des processeurs fournit un autre canal indirect d’information  : le 
temps que prend un accès mémoire révèle des choses sur les cases mémoires qui ont 
été récemment accédées, ce qui permet de monter des attaques, comme nous l’avons 
montré sur l’exemple du chiffrement AES. La programmation dite «  en temps 
constant » (ou plus exactement en temps indépendant des données secrètes) est une 
des manières de contrer ces attaques par observation du temps et des caches. Nous 
avons vu comment la caractériser en termes de flux d’information et comment la 
mettre en pratique. Le cours s’est conclu par un aperçu des attaques de type 
«  Spectre  », qui combinent observation du cache et manipulation de l’exécution 
spéculative du processeur.

Cours 5 – Typage et sécurité

Le 7 avril 2022

Qu’il soit vérifié dynamiquement (pendant l’exécution) ou statiquement (par ana-
lyse préalable), le typage est un aspect essentiel des langages de programmation de 
haut niveau. Le cours a étudié les contributions du typage à la sécurité des logiciels, 
des garanties de base (sûreté des valeurs et de la mémoire) indispensables pour l’isola-
tion logicielle à des garanties d’intégrité plus fines s’appuyant sur l’abstraction de 
types et sur le typage statique des ressources et de leur possession (ownership et 
borrowing, comme dans le langage Rust). Nous avons ensuite montré comment 
appliquer le typage statique à du code mobile, par vérification de code intermédiaire 
(comme le bytecode JVM du langage Java) ou de code machine, allant jusqu’à la 
notion très générale de code auto-certifiant (proof-carrying code).



24	 Xavier leroy	

Cours 6 – Compilation et sécurité

Le 14 avril 2022

Compiler un programme source en code machine peut être l’occasion de le rendre 
plus résistant à certaines attaques. Par exemple, des tests systématiques de bornes lors 
des accès aux tableaux peuvent être introduits pendant la compilation, puis optimisés 
pour en réduire le surcoût en temps d’exécution, augmentant ainsi grandement la 
sécurité à coût raisonnable. Cependant, de nombreuses optimisations de compila-
tion, pourtant sémantiquement correctes, peuvent affaiblir la sécurité du pro-
gramme. C’est notamment le cas des optimisations qui supposent l’absence de 
comportements indéfinis dans le programme source. Nous avons montré comment 
caractériser ces différences de sécurité entre un fragment de programme source et son 
code compilé à l’aide d’outils sémantiques classiques : l’équivalence observationnelle 
et le problème de la full abstraction. Nous avons présenté quelques approches récem-
ment proposées pour compiler «  en toute sécurité  », c’est-à-dire en préservant les 
équivalences observationnelles dans les deux directions.

Cours 7 – Calculer sur des données chiffrées ou privées

Le 21 avril 2022

Le chiffrement est très efficace pour protéger le secret des données au repos (stoc-
kage) et en transit (réseaux). Pourrait-il le protéger également pendant les calculs sur 
ces données ? Le cours a introduit la notion de chiffrement homomorphe, permet-
tant de calculer sur des données chiffrées sans avoir la clé de déchiffrement, et décrit 
les grandes lignes de l’approche de Gentry (2009), la première réalisation de ce 
concept. Le chiffrement homomorphe, ainsi que d’autres protocoles cryptogra-
phiques, fournit des solutions au problème du calcul multipartite sécurisé, où les 
participants calculent ensemble une fonction de leurs données privées sans rien révé-
ler de plus que le résultat final. Bien qu’encore très coûteuses en temps d’exécution, 
ces approches cryptographiques apportent une réponse mathématiquement solide 
au problème de calculer sur des données confidentielles sans fuites d’information.

SÉMINAIRE (EN RELATION AVEC LE SUJET DU COURS)

Séminaire 1 – Influence de la qualité des spécifications  
sur la sécurité logicielle

Olivier Levillain (Télécom SudParis), le 17 mars 2022

Les systèmes d’information que nous utilisons quotidiennement sont d’une 
grande complexité. Ils reposent en particulier sur l’implémentation de protocoles 
réseau et sur l’interprétation de documents aux formats variés. Ce premier séminaire 
de l’année a porté sur les spécifications décrivant ces protocoles et ces formats. Le 



	Sc iences du logiciel	 25

conférencier a montré que la manière dont ils sont spécifiés peut avoir des consé-
quences sur la sécurité de leurs implémentations, en étudiant trois exemples : Mini-
PNG, un format d’images utilisé dans un module d’enseignement en programmation ; 
le format PDF ; le protocole TLS.

Séminaire 2 – Differential Privacy: From the central model  
to the local model and their generalization

Catuscia Palamidessi (Inria), le 24 mars 2022

La confidentialité différentielle (DP, Differential Privacy) est l’une des meilleures 
approches connues pour protéger des données personnelles tout en permettant d’en 
extraire des informations statistiques utiles. L’idée centrale est d’ajouter du bruit 
aléatoire aux données publiées, en quantité soigneusement choisie pour préserver à la 
fois la confidentialité et l’utilité des données.

La conférencière a introduit le problème de l’anonymisation des données person-
nelles et motivé l’utilisation d’approches probabilistes. Elle a présenté l’approche 
classique DP, qui repose sur un traitement centralisé des données, puis une variante 
plus récente, LDP (Local Differential Privacy), où le bruitage des données est réalisé 
directement par les participants. Ensuite, elle a introduit le modèle d-privacy, qui 
unifie le modèle centralisé et le modèle distribué et s’applique à tout domaine 
métrique, et a montré comment l’appliquer aux données de géolocalisation.

Séminaire 3 – Verified implementations for real-world  
cryptographic protocols

Karthikeyan Bhargavan (Inria), le 31 mars 2022

La sécurité du Web repose sur des protocoles cryptographiques : des programmes 
distribués qui utilisent le chiffrement et la signature pour protéger les données sen-
sibles des nombreuses attaques que les adversaires qui contrôlent le réseau peuvent 
mener. Malgré trente ans d’études, on continue à découvrir des vulnérabilités théo-
riques ou pratiques dans les protocoles cryptographiques du Web, notamment TLS 
(Transport Layer Security). Le conférencier a décrit plusieurs de ces vulnérabilités et 
montré comment la vérification formelle permet d’exclure certaines classes d’at-
taques sur les implémentations de protocoles modernes tels que TLS 1.3 et Signal.

Séminaire 4 – Attaques par injection de fautes et protection logicielle

Karine Heydemann (Sorbonne Université), le 7 avril 2022

Les attaques en faute sont une classe particulière d’attaques qui nécessitent 
a priori un accès physique à la cible matérielle et visent à perturber son environne-
ment d’exécution pour altérer le comportement de l’application qui s’y exécute. Ces 
attaques sont puissantes : elles permettent de compromettre la sécurité d’algorithmes 



26	 Xavier leroy	

cryptographiques prouvés sûrs, de retrouver des informations sensibles, de contour-
ner des protections ou de prendre le contrôle d’un système. La conférencière a 
d’abord présenté les attaques par injection de fautes : moyens d’injection, effets des 
fautes, et leur exploitation pour réaliser des attaques. Elle a ensuite présenté les pro-
tections logicielles connues contre ces attaques et étudié leurs limites.

Séminaire 5 – Obfuscation du logiciel : brouiller le code  
pour protéger les programmes

Sandrine Blazy (université de Rennes 1), le 14 avril 2022

L’obfuscation de logiciel vise à brouiller le code en langage machine du logiciel afin 
qu’il soit difficile à comprendre et à analyser. C’est une technique très utile pour la 
sécurité par l’obscurité. Ce brouillage peut être effectué à différents niveaux et s’ap-
plique à des programmes n’ayant pas été conçus avec des objectifs de sécurité. Aussi 
de nombreuses stratégies de brouillage ont-elles été proposées dans la littérature. La 
conférencière a présenté un certain nombre de ces stratégies et étudié la correction 
sémantique des plus récentes.

Séminaire 6 – Transient execution attacks and defenses

Frank Piessens (K.U. Leuven), le 21 avril 2022

Depuis la découverte des attaques sur les exécutions transitoires, nous savons que 
la micro-architecture des ordinateurs a un impact majeur sur la sécurité du cloud et 
autres ordinateurs qui font tourner des codes provenant de plusieurs acteurs. Le 
conférencier a décrit ces attaques sur les exécutions transitoires et les protections cor-
respondantes. Pour ce faire, il a utilisé des techniques de modélisation provenant de 
la recherche en langages de programmation, et montré comment décrire les exécu-
tions out-of-order et spéculatives, ainsi que les attaquants capables d’observer et de 
modifier l’état de la micro-architecture. Il a ensuite utilisé ces modèles pour décrire 
plusieurs attaques sur les exécutions transitoires et pour présenter des protections 
contre ces attaques, en insistant sur la définition précise des objectifs de sécurité 
attendus pour ces protections.

COLLOQUE – PROBABILISTIC PROGRAMMING

Les 29 et 30 juin 2022

La programmation probabiliste fournit de puissants outils pour la modélisation 
statistique. En s’appuyant sur la sémantique formelle, les compilateurs et autres 
outils en provenance des langages de programmation, la programmation probabiliste 
construit des évaluateurs efficaces pour les modèles et les applications en apprentis-
sage statistique, utilisant les théories et les algorithmes d’inférence provenant des sta-



	Sc iences du logiciel	 27

tistiques. Ce colloque, coorganisé avec Jean-Baptiste Tristan (Boston College), avait 
pour objectif de décrire des progrès récents et des applications de la programmation 
probabiliste en croisant les points de vue provenant des langages de programmation, 
des statistiques et de l’apprentissage. Il  s’est tenu les 29 et 30  juin 2022 et a réuni 
Francis Bach (Inria), Gilles Barthe (Max Planck Institute), Atılım Güneş Baydin 
(Oxford University) Guillaume Baudart (Inria), Nicolas Chopin (ENSAE), Andrew 
Gelman (Columbia University), Andrew  D. Gordon (Microsoft Research), Maria 
Gorinova (Twitter), Vikash  K. Mansinghka (MIT), Jan-Willem van de Meent 
(University of Amsterdam), Xavier Rival (Inria), Joseph Tassarotti (Boston College) 
et Christine Tasson (Sorbonne Université).

RECHERCHE

Les activités de recherche de la chaire Sciences du logiciel s’effectuent dans le cadre 
de l’équipe-projet Inria Cambium, commune au Collège de France et à l’Inria Paris 
et dirigée par François Pottier, directeur de recherche Inria.

La recherche de l’équipe Cambium vise à améliorer la fiabilité et la sécurité du logi-
ciel en faisant progresser les langages de programmation et les méthodes formelles de 
vérification de logiciel. Les principaux résultats de l’équipe pendant l’année universi-
taire 2021-2022 sont listés ci-dessous. Une description plus détaillée est disponible 
dans le rapport annuel d’activité Inria de l’équipe, https://raweb.inria.fr/rapportsac-
tivite/RA2021/cambium/.

VÉRIFICATION DÉDUCTIVE DE PROGRAMMES

Léo Stefanesco, ATER du Collège de France, a soutenu sa thèse, dans laquelle il 
étend la logique de séparation concurrente Iris pour montrer des simulations entre 
implémentations concrètes et spécifications abstraites de modules. Nous avons égale-
ment développé une nouvelle logique de programmes pour raisonner sur la consom-
mation mémoire en présence de récupération automatique par  GC. Enfin, nous 
avons formellement vérifié la correction et la complexité d’une structure de donnée 
transiente (à la fois éphémère et persistante).

VÉRIFICATION DE COMPILATEURS

Basile Clément a poursuivi ses travaux de thèse sur la validation a  posteriori de 
compilateurs pour langages tensoriels en développant et en intégrant au compila-
teur Halide une implémentation de son algorithme de validation. En collaboration 
avec Andrew Appel (université de Princeton), nous avons vérifié formellement une 



28	 Xavier leroy	

structure de données de type arbre préfixe avec représentation canonique, et l’avons 
intégrée dans le compilateur CompCert afin de réduire les temps de compilation. Nous 
avons également ajouté à CompCert le traitement de la construction _Generic du 
langage C11 et un mécanisme de génération de syntaxe abstraite CompCert C utili-
sable par des outils de vérification déductive. Enfin, nous avons démontré la correc-
tion de l’optimisation tail modulo constructor d’OCaml en utilisant la logique 
relationnelle d’Iris.

PROGRAMMATION FONCTIONNELLE TYPÉE EN OCAML

Nous avons entamé une formalisation du système de modules du langage OCaml 
par traduction vers un langage intermédiaire typé plus simple. Cette formalisation 
met en évidence des irrégularités dans les modules d’OCaml et suggère des pistes 
d’amélioration. En parallèle, nous avons poursuivi le travail préparatoire à l’intégra-
tion du parallélisme à mémoire partagée et des gestionnaires d’effets dans OCaml. 
Enfin, nous avons étudié la question du debootstrap du compilateur OCaml, c’est-à-
dire la possibilité de le reconstruire sans amorçage depuis une version antérieure du 
compilateur.

MODÉLISATION ET TEST DE MODÈLES MÉMOIRE  
FAIBLEMENT COHÉRENTS

Nous avons poursuivi l’étude de formalismes axiomatiques et sémantiques pour 
décrire les modèles mémoire fournis par les processeurs multicœurs et les langages de 
programmation contemporains. Les travaux récents, en collaboration avec l’entre-
prise ARM Ltd, portent sur la modélisation et le test des mécanismes de gestion de la 
mémoire virtuelle dans l’architecture ARMv8.

PUBLICATIONS

Bour  F. et Pottier  F., «  Faster reachability analysis for LR(1) parsers  », in  : SLE  2021: 
Proceedings of the 14th  ACM SIGPLAN International Conference on Software Language 
Engineering, Chicago, Association for Computing Machinery (ACM), 2021, p.  113-125, 
https://doi.org/10.1145/3486608.3486903 [HAL : hal-03478172].
Courant  N., Lepiller  J. et Scherer  G., «  Debootstrapping without archeology: Stacked 
implementations in Camlboot », The Art, Science, and Engineering of Programming, vol. 6, 
no  3, 2022, art.  13, https://doi.org/10.22152/programming-journal.org/2022/6/13 [HAL  : 
hal-03917754].
Madiot  J.-M. et Pottier  F., «  A  separation logic for heap space under garbage collection  », 
Proceedings of the ACM on Programming Languages, vol. 6, no POPL, 2022, art. 11, https://
doi.org/10.1145/3498672 [HAL : hal-03478162].

https://doi.org/10.1145/3486608.3486903
https://doi.org/10.22152/programming-journal.org/2022/6/13
https://doi.org/10.1145/3498672
https://doi.org/10.1145/3498672


	Sc iences du logiciel	 29

Madiot  J.-M., Pous  D. et Sangiorgi  D., «  Modular coinduction up-to for higher-order 
languages via first-order transition systems », Logical Methods in Computer Science, vol. 17, 
no 3, 2021, https://doi.org/10.46298/lmcs-17(3:25)2021 [HAL : hal-03350199].
Mével G. et Jourdan J.-H., « Formal verification of a concurrent bounded queue in a weak 
memory model », Proceedings of the ACM on Programming Languages, vol. 5, no ICFP, 2021, 
art. 66, https://doi.org/10.1145/3473571 [HAL : hal-03298759].
Moine A., Charguéraud A. et Pottier F., « Specification and verification of a transient stack », 
in : CPP 2022: Proceedings of the 11th ACM SIGPLAN International Conference on Certified 
Programs and Proofs, Philadelphie, Association for Computing Machinery (ACM), 2022, 
p. 82-99, https://doi.org/10.1145/3497775.3503677 [HAL : hal-03472028].
Oliveira Vale A., Melliès P.-A., Shao Z., Koenig J. et Stefanesco L., « Layered and object-based 
game semantics  », Proceedings of the ACM on Programming Languages, vol.  6, no  POPL, 
2022, art. 42, https://doi.org/10.1145/3498703 [HAL : hal-03456034].
Raad  A., Maranget  L. et Vafeiadis  V., «  Extending Intel-x86 consistency and persistency: 
Formalising the semantics of Intel-x86 memory types and non-temporal stores », Proceedings 
of the ACM on Programming Languages, vol.  6, no  POPL, 2022, art.  22, https://doi.
org/10.1145/3498683 [HAL : hal-03426997].
Stefanesco  L., Asynchronous and Relational Soundness Theorems for Concurrent Separation 
Logic, thèse de doctorat, sous la direction de P.-A. Melliès, université de Paris, 2021, https://
theses.hal.science/tel-03526298.

https://doi.org/10.46298/lmcs-17(3:25)2021
https://doi.org/10.1145/3473571
https://doi.org/10.1145/3497775.3503677
https://doi.org/10.1145/3498703
https://doi.org/10.1145/3498683
https://doi.org/10.1145/3498683
https://theses.hal.science/tel-03526298
https://theses.hal.science/tel-03526298



