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What is a quantum sensor?
C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017)

. Probe: controllable quantum system with quantized energy levels |
Neutral atoms, electronic/nuclear spins, superconducting qubits | single

qubit
. Information on physical quantity: encoded in energy levels or
Readout e.g. through measurements of Bohr frequencies incoherent
S ensemble
. Sensitivity: use of quantum coherence -
e " of qubits
Measurement of phase shift in temporal superposition states
more than
one qubit

Many concepts are well known, resulting from decades of developments
in high-resolution spectroscopy: atomic physics, magnetic resonance



Hanle effect (Claude Cohen-Tannoudji CDF 2003-2004)
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Atomic magnetometry

Today’s sensitivity

Volume 28A, number 9 PHYSICS LETTERS 10 February 1969

p even and the same width as the Hanle curve the static magnetization of very dilute magnetic of atomic ma gn etometers

(strictly independent of the r.f. power). We make samples, ...

a selective amplification of the modulation w | ~y f’I’ / H 7

(p = 1) and a phase sensitive detection with a ti- The authors are grateful to M. A. Bouchiat ~ \/

me constant of 3 sec. By this way, we have got, and J. Brossel for their constant interest dur-

for optimal pumping bgam intensity, a signal to ing the course of this work.

noise ratio of 2.5 X 10° with a width of 5 uG. | I h
For detection of very weak magnetic fields, we mgG Q t

fix H, at the zero value, corresponding to the References

maximum slope of the dispersion shaped reso- 1. W.Hanle. Z.Phys. 30 (1924) 93.

nance . We can test the sensitivity of the appa- 2. J.C.Lehmann and C. Cohen-Tannoudji. Comptes Mad g N EtOe nce p h d IO g I'a p hy

. Rend. 258 (1964) 4463.
ratus by sending on sweeping colls square pulses 3. M. A. Bouchiat and J. Brossel, Phys. Rev. 147 (1966)

of current corresponding to a given variation, 41, // \
6Ho, of Hy. Fig. 1 shows the signal obtained 4. E.B. Alexandrov, A.M. Bonch-Bruevich and B. A. / \ \
for 6Hy = 2.1 X 10-9 gauss. This sensitivity can Khodovoi, Opt. Spectry. 23 (1967) 151. .. |
be still improved for repetitive signals by using 9. 'l"l-glég: ?6-51(0“(10 and T.Hashi, Jap. J. Appl. Phys. 7 , ~ , );
ot b multlchanne.l secnlanel NiE s 6. %\I.Po}onsk.y and C.Cohen-Tannoudji. Comptes Rend. \ ) “ , ‘
shows 3 X 10-10 gauss amplitude pulses. 260 (1965) 5231. | 4
Such a high sensitivity, the highest to our For excited states see: " -
knowledge, seems promising for several applica- C.J. Favre and E. Geneux, Phys. Letters 8 (1964) 190, A
tions: measurement of the very weak interstel- E. B. Alexandrov et al.. Zh. Eksp. i Teor. Fiz. 45 ]

(1963) 503. = S

lar fields, biomagnetism [7]’ measurement of 7. A.Kolin, Physics Today. November 1968, p.39.

Could similar methods be implemented using solid-state quantum systems? A



Point defects in crystals (Nevill Mott

&

Perfect crystal
Translational symmetry.
The electron moves in the average field of other
electrons and nuclei

— Bloch states delocalized on the whole crystal

Localized vacancy G i W way
Symmetry reduced to reflections and rotations. ® *

Unpaired electrons — dangling bonds Lo

— state localized on the vacancy, discrete energy levels
Electronic spin, coupling to nuclear spins

A point defect is an artificial molecule in the solid state

Example: The Nitrogen-Vacancy (NV) center in diamond
Jorg Wrachtrup (1997)
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NV center in diamond: a solid-state atomic-like system

PL [a.u.]

Fluorescence (u. a.)

Atomic-like energy levels within the 5 eV diamond bandgap

Electronic ground state is a spin triplet § = 1

C =~ 30%
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NV center : magnetometer
of atomic size with sensitivity

to static magnetic field of 107 T
— myriad of applications!

Review: L. Rondin et al.,
Rep. Prog. Phys. 77, 056503 (2014)



Widefield magnetic imaging using NV centers
also called "Quantum diamond magnetometry”

CMOS camera -

permalloy microdot

bandpass
ter

[100] diamond
NV layer

dry

magnetic sample



mm A lled  Optically-based magnetic field mapping
1 AR each pixel records a snapshot of ESR spectra

with the four NV orientations in the (110) crystal
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square = micromagnt ‘ M. Chipaux et al. Eur. Phys. J. D 69, 166 (2015)




Microscale measurement of magnetization

e

®®
®®®

In each permalloy micromagnet, the
magnetization M is induced by the
applied magnetic field B,

10*NVs/um-—2
B,=63mT
distance NV-sample : d = 19.5 yum
M=(8+2)x10"*A/m

equivalent to 10~ emu ~ 10" yp

B, (MT) B, (MT) B,(mT)

Experiment

0 40 80 120
X (Um)

Signal for d ~ 20 um = sensitivity of commercial SQUID
L. Toraille et al., Nano Letters 18, 7635 (2018)

0 50 100
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7

microwave
2.87 GHZz

What can we measure with NV centers?

optical pumping Magnetic field
532 nm

Temperature

Stress tensor

"'I:‘_:,/.',r.“ 2

luminescence

FAN

500 600 700 800
Wavelength [nm]

(€4 Acceleration

Nearby spins
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NV center sensing modalities
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Optically accessible spin centers: More and more systems!

Diamond

Silicon carbide

2D: hexagonal
boron nitride

Gallium Nitride
(and AlIN, silicon)

Molecular systems
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. RS
nitrogen . .
vacaﬁcy VsV C-related Two different  pentacene in EYFP
° _ ° 7 ° 7 _ °
NV center in 4H-SiC defect (?) species (?) para-terphenyl protein
Li et al., Stern et al., Luo et al,, Mena et al.,, Feder et al,,
V\S/g?ecnh:gu(l:l);g;;l" Nat. Sci. Rev. Nat. Mat. Nat. Mat. Phys. Rev. Lett. Nature
(2022) (2024) (2024) (2024) (2025)
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Magnetic sensitivity (T/vHz)
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Sensitivity of ODMR-based sensors

y . gyrometric ratio

C : readout fidelity (ODMR contrast)

N : number of spins (NV centers)

T": interrogation time (spin dephasing time T¥)

Spatial resolution (m)

Budker & Kimball, Optical Magnetometry
(Cambridge University Press, 2013)

1)
2)

3)

Improvement strategies:
“Quantum-grade” diamond optimizing T’

Improving light extraction (n;, . = 2.4)
— Nanostructure fabrication
— Micro and nanoscale optical lenses

Electrical detection of the NV resonance

13



“Quantum-grade” diamond: Spin dephasing time 77
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L ow-dimensional nanostructures (Mmscopeomecﬁve
L
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Y\_\_-'x ‘ Quantum strain sensing with hBN 1 ]
Thin-film (2D) Fabrication & Engineerability Close proximity

Vincent Jacques (L2C, Montpellier)
Kim et al., Advanced Photonics 7, 064002 (2025) see e.q. Nature 549, 242 (2017) 15



Thermal mapping with NV-doped nanodiamonds
Heterogeneous carbon foam

Laser 532 nm Laser 1064 nm

L Peak Camera

Homogeneous resin

. s 2.2 :

Q 2 - :":.'\ Q
~ ) ‘6’
3 S 2
D15 o
= \ %
S v d —
e 1 1 g 2 18] 1
= X — R = o6 ——
- r Ty = rv-

0.5} i 1.6+

-1 -0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.0

Distance to the heating spot log(m)

Distance to the heating spot log(m)

Huan-Chen Chang
(Academia Sinica, Taiwan)

Developed with Denis Rochais & Loic Toraille (CEA-DAM)
Léonie Evanno, Melissa Techer et al., in preparation 16



Improvement of collection efficiency using optics with high NA

Solid immersion lens
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Kim et al., Advanced Photonics 7, 064002 (2025)
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How to make engineered nanostructure devices from diamond?

Bulk diamond single-crystal chips
. Ve /‘
. . . N S to suspended membranes
&,\ Silicon wafer with thin film - f P _
. : o Oor nanostructurin
for photonic waveguide \ O 5
Si0,/SION ~ Sicore ¢ .. — — \
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- Top-down fabrication method
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silicon photonic wire waveguide M. Loncar (Harvard) D. Englund (MIT), B Barclay (Calgary),... 18



Diamond micropillars

Fabrication using ICP
on a single-crystal diamond wafer
X. Checoury (C2N)

Project SINFONIA (PEPR Quantique)
& EquipEx+ e-Diamant
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Neuron growth on dlamond nanoplllars fabricated at C2N. (Collab F Treussart LUMIN)




ZPL 1.95eV0.7 eV

The real NV center: NV~ 5 NV (+N)

“ photoionization * NV?°

-11 rl spin
m.=0 , m¢=%1
rh l"
R back-conversion N A

®

The photoinduced conversion rate NV~ — NVV is spin dependent.

1.21 eVZPL 2.15 eV

Provides the basis for the electrical detection of the spin resonance.

5.5eV
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Photoconductive detection of the NV spin resonance

Electric contacts have to implemented in order to collect the &
charges induced by NV~ — NV

_antenna
- carbide bonding between diamond and metallic electrodes
followed by annealing
Scalable, low resistance /
Ohmic contact not ensured, adhesion and mechanical issues [Diamond

NV ““Electrode

- diamond graphitization by irradiation or laser illumination —

532nm CW

Simple, ohmic contact, good adhesion _,
" m.=20cem.==1 U m.20com.=+1

Parasitic resistivity of the electrodes : “—‘W

0.98

=~ 0.96

=

@ 0.94

" 0.92
09} %

0.88

0.86 :
275 28 285 29 295 3

— MW frequency [GHz]
G. Villaret et al., Appl. Phys. Lett. 122, 194001 (2023) 54




Superconductivity at high pressure

year Super-hydrides:
Synthesis at high pressure
2025: systematic computational ~ diamond anvil cell (DAC) using laser heating of
study of binary super-hydrides NH3BH3 + metal (uranium)

Evidence for SC ~ 10 compounds

2019: lanthanum hydride / \anwl

(89110 '®)i LaH,,
| T.=260Kat200GPa \ metalt
gaske
2015: sulfur hydride / \
synchrotron

SH; .

. anvil

%reTCSB% ?:tcil?ssoegle): \ / X-ray diffraction
- =

optical probe
1996: record of critical infrared
temperature 7~ = 165K visible

for cuprate Hg-1223 X-ray
at pressure 30 GPa




In-situ optical detection of the Meissner effect using NV-enabled anvils

\

\

\:/

NN
1@

=217\
N"J
Z TN ISR

/

expulsion of a static
magnetic field

I'<T, —> I >1,



yo i‘ 4 ’ <
. ]
- " b

Martin

Schmidt
ultrapure
“ lm single-crystal

diamond layer

Implantation
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vacancies =
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leads to creation w P /4
of NV centers

Design of NV centers in ultra-pure diamond anvils

using FIB nitrogen implantation

1 mm
Plasma
source
FIB
Column
1.2
SEM
1.0
— 0.8
5
o
;8 0.6
Sample 2
chamber &
0.4
0.2
0 100 200 300 0.0

Lesik et al., Physica Status Solidi A (201 3)

X position (um)

System developed in collaboration with TESCAN ORSAY
which is how a commercial product

PL counts (cts/s)



Proof-of-concept experiments (2019)

Hsieh et al,, Science 366, 1349 (2019)  Lesik et al., Science 366, 1359 (2019)  Yip et al., Science 366, 1355 (2019)
Norman Yao (Berkeley — Harvard) =~ Our team (ENS Paris-Saclay & Thales) Sen Yang (CUHK — HKUST)
Raymond Jeanloz (Berkeley) Paul Loubeyre’s team (CEA-DAM) Swee Goh (CUHK)

Superconductivity (up to 7 GPa)

Magnetism (up to 30 GPa) BaFe2(Asos9Po.41)2
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MW frequency (GHz)

Is there a pressure limit for NV magnetic sensing?

1 GPa B=1.5mT 30 GPa B=8 mT
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What causes the deterioration of the "NV Meissner signal’ at high pressures?

Is it possible to maintain the NV signal at pressures above 40-50 GPa?



Before
load

High
pressure

The anvil tip is in a stressed environment

Competition between compression
and surface tension at the anvil tip

= At high pressure, the stress in the anvil tip is compressive,
but anisotropic due to anvil cupping

27
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Stress environment in the anvil tip: Model 28

40 5 E BT BT EAREY TR TN SRS BT RS
. | ! TesaGPa | B 1025
* The NV centers are not in the sample space, iel I I I I L scomara Je o= l
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: (TP | I I 1408GPa 5 Lo 1 il _
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Related work: K. O. Ho et al, ~=== amodel fit B applied in [100] (mT)

Phys. Rev.Appl. 19, 044091 (2023)
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Metastable singlet states

= |s there a way to mitigate the non-hydrostatic stress ? ,

Ground triplet states &’




Control of the stress environment by microstructuration

Non-hydrostatic stress occurs due to the competition Idea :isolate part of the anvil surface,
between compression and surface tension and immerse it into the PTM

milling
with FIB
(or fs-laser)
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A. Hilberer et al,, Phys.Rev.B 107,1222102 (2023)
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NV magnetic sensing under hydrostatic environment 30

u.)

oFit yields reduced anisotropic stress, o ~ (.96

®Magnetic sensing behavior remains unchanged to
|30 GPa, there is no longer a pressure limit

Photoluminescence intensity (a.

(8) 4
¢ Confirmed in microdiamonds u.agé1 . '\/“/\1
: . . nogs| T
by Dai et al., Chinese Physics 50 35 40 45 5.0
Letter (2022) MW frequency (GHz)

e Complementary approach :[111]-oriented anvil
under uniaxial strain

| 111 Norman Yao et al. (Harvard)
o along [ ] arXiv:2306.03122 (05 June 2023)
o, = o Nature 627, 73-79 (2024)

Photoluminescence intensity (a.u.)

o, =0 Jiangfeng Du et al. (CAS, Hefei)
arXiv:2306.07840 (13 June 2023)
Nat. Commun. 15, 8843 (2024)




Probes of high-pressure superconductivity

expulsion of DAC
a static

NV centers ‘ h ” @

standard Lesik et aI Science (2019)

SQUID

specific
miniaturization

magnetic field detected signal
for I'< 1- sensitivity

-y, <0
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Maturation des capteurs quantiques a centres NV
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Chaine d'approvisionnement du diamant Développer la coordination entre foumisseurs, ingenieurs 10-3
fragmentée’; diversite des sources, mangule d'appareils et utillsateurs finaux’, encourager la standardisation ( ) '.
de standardisation des qualites et la transparence sur les spécifications des matériaux y . £.. 1%
Proprigtes des matériaux liniitées (cohérence Soutenir la R& D en croissance de diamant, controle des w*}* YGRS TR vl TR S R e L 0
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dopage, reproductibilite) matériaux optimisés pour des applications ciblees
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Ecosystemé logiciel ét d'anaiyse fragmeénte
chaque groupe developpe ses outils

Difficuité a identifier les «applications gagnahtes”
a court terme

Manque de communication entre acteurs

(mise a lechelle, conditionnement, couts)
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Investir dans le developpement de prototypes integies
avec conditionnement, commande electronique.
compatiibilité optique, interfaces utillsateur simplifiées

Encourager la creation d un ecosystéme logiciel commn, avec
des outils standards (acquisition, commande, analyse de signal qua-
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(matériaux, apparells, ufilisateurs) —* Engager de.s prOJe’fs pllot(?§, fmance§ pubhquemen?, reunissant L)
recherche, industrie et utilisateurs finaux autour dé cas d'usage aCCO rd a b I e
pour les capteurs et apparells quantiques procédures de tést, critéres de performance repronuc dictribles : \ d e ]. O M H 4
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