Skip to main content
The English version of this website is provided through automatic translation.

Quick access

  • Events
  • Audios & videos
  • Chaires
  • FR
  • FR

Navigation principale

  • Public lectures
    • Agenda
    • Audio & video
    • Current chairs
    • Special events
    • Guest lecturers
    • All public lectures
  • Research
  • Libraries
  • Publishing
  • Le Collège de France
    • The Collège and its history
    • The chairs
    • Awards
    • Special events
    • Special initiatives
    • Digital resources
    • The Collège de France Foundation
    • The Hugot Foundation
    • PSL University
    • Doctoral studies
    • Working at the Collège de France
    • News
    • Visiting the Collège de France

Quick access

  • Events
  • Audios & videos
  • Chaires
02 Sep 1996
Lecture

Trace formula in non-commutative geometry and Riemann hypothesis

02 Sep 1996
  • Facebook
  • LinkedIn
  • Bluesky
  • Threads
  • Copy url
Monday 2 September 1996
See also:
  • Alain Connes

In my lecture this year, I showed how to reduce the Riemann hypothesis to a trace formula on a non-commutative space. This gives a spectral interpretation of the zeros of the Riemann zeta function, as well as a geometric interpretation of explicit number-theoretic formulas.

Documents and media

  • Download the Abstract
    pdf (2.29 MB)

See also

Alain Connes, chair Analysis and geometry

Breadcrumb

  1. Home
  2. Statutory Chairs
  3. Alain Connes, chair Analysis and geometry
  4. Public lectures
  5. Trace formula in non-commutative geometry and Riemann hypothesis

Shortcuts

  • Agenda
  • Audio & video
  • Podcasts
  • News
  • Press & logo kit
  • The Collège in 10 questions
  • Doctoral studies
  • Working at the Collège de France
  • Public procurement
  • Newsletter
  • Visit the Collège de France
  • Patrons and donors

Our websites

  • Intranet
  • Omnia
  • Salamandre
  • Colligere
  • Collège de France Foundation
  • PAUSE program
  • Avenir Commun Durable
  • La Vie des idées
  • Campus de l’innovation pour les lycées

Subscribe to our newsletter

Follow us

Donate

Footer menu

  • Location and contact
  • Legal notice
  • Credits
  • Accessibility: not-compliant