Amphithéâtre Guillaume Budé, Site Marcelin Berthelot
En libre accès, dans la limite des places disponibles
-

Résumé

Quantum simulation has emerged as an interdisciplinary research field that enables microscopic access to quantum matter, both in and out of equilibrium, across various physical platforms. As an example, we analyze the emergence of the pseudogap phase in the fermionic Hubbard model. We identify a universal behavior of magnetic correlations upon entering the pseudogap phase, observed in both spin-spin and higher-order spin-charge correlations.

In addition to analog approaches, gate-based fermionic quantum computing offers distinct advantages for quantum simulations. We demonstrate the elementary operations required to manipulate orbital degrees of freedom, which form the basis of a fermionic quantum computer. We show high-fidelity gate operations and the generation of long-lived entangled states. Such gate-based operations can also be used to read out relevant order parameters and pairing correlations in analog quantum simulations.

Intervenant(s)

Immanuel Bloch

Max Planck Institute et LMU, Munich