Amphithéâtre Maurice Halbwachs, Site Marcelin Berthelot
En libre accès, dans la limite des places disponibles


Conversion of carbon dioxide into hydrocarbons (methane, ethylene) and alcohols (ethanol, propanol) using renewable electricity as an energy source is an attractive strategy for storing renewable energies (solar and wind energy) into the form of chemical energy (a fuel) and using carbon dioxide as a raw material for the synthesis of chemical products. However, carbon dioxide activation is a complex process which implies multiple electron and proton transfers, resulting in the need for stable, efficient and selective catalysts in order to make this strategy a practical industrial option. Here we discuss our ongoing research using original Cu-based catalytic materials and addressing several issues associated with on carbon dioxide electrolysis, such as activity, selectivity, carbonate formation and carbon loss. This led us to investigate the effect of molecular modification of catalyst surfaces, optimization of electrolysis under acidic conditions as well as carbon monoxide electroreduction into ethylene and alcohols.

Marc Fontecave

After a PhD at École normale supérieure in Paris (1984), a post-doctoral internship at Karolinska Institute, Stockholm (1985-1986), 20 years as Professor of Chemistry at University Joseph Fourier, Grenoble (1988-2008), Marc Fontecave is, since 2009, Professeur at Collège de France, Paris. He is a member of the French Academy of Sciences and of the Royal Swedish Academy of Sciences. His research focusses on catalysis (homogeneous, heterogeneous, bioinspired) and biocatalysis (metalloenzymes and artificial enzymes) for water and carbon dioxide electrolysis.